The replacement joint of the future, naturally grown

Jul 28, 2010

A pioneering study published Online First in the Lancet has shown that failing joints can be replaced with a joint grown naturally using the host's own stem cells. The work paves the way for a future of naturally grown joints that would last longer than currently used artificial joints. The work was carried out by Professor Jeremy J Mao, and his team at Columbia University Medical Center, New York, USA, and colleagues from University of Missouri and Clemson University.

Patients having replaced almost always want to know how long their artificial joint will last. But with ageing populations, and an increasing number of patients under 65 requiring replacement joints, there is a real danger many patients will outlive their replacement joint. These patients would then need another gruelling operation, at an advanced age, and yet without much bone left to support another metallic joint.

In this proof-of-concept study, Professor Mao and colleagues removed the forelimb thigh joint of 10 rabbits, and then implanted three dimensional biomaterial scaffolds infused with growth factor. The rabbits' own stem cells were 'homed' by the growth factor to go to the location of the missing joint, and regenerated and bone in two separate layers. Just four weeks later, the rabbits were able to resume normal movements, similar to rabbits with normal functional joints. These rabbits had grown their own joint using their own stem cells, instead of stem cells harvested apart or outside of the host.

Prior to the work reported in this Lancet paper, no one has been able to regenerate a limb joint with either stem cells harvested or the host's endogenous stem cells. Thus there are two new aspects to this work: 1) a limb joint regenerated for the first time with the animals involved resuming functions on the new joint; and 2) the regenerated limb joint being created from host's own endogenous stem cells, not stem cells that are harvested and manipulated outside the host's body.

Professor Mao says: "This is the first time an entire joint surface was regenerated with return of functions including weight bearing and locomotion. Regeneration of cartilage and bone both from the host's own stem cells, rather than taking out of the body, may ultimately lead to clinical applications. In patients who need the knee, shoulder, hip or finger joints regenerated, the rabbit model provides a proof of principle. Several scientific and regulatory issues must be dealt with prior to patient applications."

He adds that the load bearing recovery in human patients will be more challenging than in animal models, due to humans being two-legged. He says: "Also, patients may have pre-existing conditions and medication that could affect joint regeneration, and this is clearly difficult to replicate in a study using animal models. However, human patients would benefit from post-operative rehabilitation."

In an accompanying Comment, Dr Patrick H Warnke, Bond University, Gold Coast, Australia, describes the work as "a renaissance of use of the host as a bioreactor and recruitment of the host's endogenous cells, including stem or progenitor cells, for tissue regeneration". But he adds that not all patients would have the same capacity for natural regeneration, for example elderly people with diabetes. He adds that the period of immobility while a person's joint regenerates also presents its own risks, and a standard metal joint would reduce these risks.

Discussing ways to reduce regeneration time, Dr Warnke says: "Another promising approach would be to commence the entire cultivation of the joint replacement inside the patient, but to change the site of tissue growth. Tissue at the size of a joint could be grown inside a muscle first and subsequently transplanted to replace the original joint."

He concludes: "The optimum way to grow a biological joint remains a controversy…Although we are yet to see a biological joint replacement in man, Lee and colleagues have offered a promising insight into what might be on the horizon."

Explore further: Novel marker discovered for stem cells derived from human umbilical cord blood

Related Stories

Growing Cartilage from Stem Cells

Oct 20, 2009

(PhysOrg.com) -- Damaged knee joints might one day be repaired with cartilage grown from stem cells in a laboratory, based on research by Professor Kyriacos Athanasiou, chair of the UC Davis Department of Biomedical Engineering ...

Embryonic stem cells used to grow cartilage

Sep 06, 2007

Rice University biomedical engineers have developed a new technique for growing cartilage from human embryonic stem cells, a method that could be used to grow replacement cartilage for the surgical repair of knee, jaw, hip, ...

Stems cells might help repair joints

Feb 07, 2007

U.S. scientists have built a unique weaving machine that creates a three-dimensional fabric "scaffold" to repair joints with a patient's own stem cells.

Using stem cells to mend damaged hips

Mar 18, 2010

(PhysOrg.com) -- Bone stem cells could in future be used instead of bone from donors as part of an innovative new hip replacement treatment, according to scientists at the University of Southampton.

Recommended for you

New pain relief targets discovered

4 hours ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Building 'smart' cell-based therapies

4 hours ago

A Northwestern University synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other ...

Proper stem cell function requires hydrogen sulfide

7 hours ago

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Nemo
not rated yet Jul 29, 2010
I'd be first in line for a replacement elbow, shoulder and teeth. If this goes mainstream it would revolutionize much of medicine.

More news stories

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Researchers discover target for treating dengue fever

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...

Our brains are hardwired for language

A groundbreaking study published in PLOS ONE by Prof. Iris Berent of Northeastern University and researchers at Harvard Medical School shows the brains of individual speakers are sensitive to language univer ...

Study recalculates costs of combination vaccines

One of the most popular vaccine brands for children may not be the most cost-effective choice. And doctors may be overlooking some cost factors when choosing vaccines, driving the market toward what is actually a more expensive ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...