Molecular mechanism triggering Parkinson's disease identified

Jul 28, 2010

Scientists at the Stanford University School of Medicine have identified a molecular pathway responsible for the death of key nerve cells whose loss causes Parkinson's disease. This discovery not only may explain how a genetic mutation linked to Parkinson's causes the cells' death, but could also open the door to new therapeutic approaches for the malady.

In a study to be published July 29 in Nature, investigators used an , the common fruit fly, to show that the mutation results in impaired activity of recently discovered molecules called microRNAs, which fine-tune in cells. This impairment, in turn, leads to the of nerve cells specifically involved in the secretion of the dopamine. The degeneration of these so-called dopaminergic nerve cells in the brain is a hallmark of Parkinson's.

"MicroRNA, whose role in the body has only recently begun to be figured out, has been implicated in cancer, cardiac dysfunction and faulty immune response," said Bingwei Lu, PhD, associate professor of pathology and the study's senior author. "But this is the first time it has been identified as a key player in a neurodegenerative disease."

Parkinson's is a movement disorder characterized outwardly by tremor, difficulty in initiating movement, and postural imbalance and, in the brain, by a massive loss of the dopaminergic nerve cells in areas that fine-tune motor activity. It affects an estimated 1 million people in the United States. The incidence of Parkinson's, rare in younger people, increases dramatically with age, although nobody is sure why. Nor is it known why the most common mutation implicated in Parkinson's — LRRK2 G2019S, found in about one-third of all Parkinson's cases occurring among North African Arabs and North American Ashkenazi Jews — increases the likelihood of contracting the disease.

The new findings show that the LRRK2 mutation trips up the normal activity of microRNAs, resulting in the overproduction of at least two proteins that can cause certain cells, like brain cells, to die.

Understanding how microRNA can go wrong requires an understanding of its relationship to its much longer and better-known cousins, "messenger RNA" (or mRNA) molecules. The latter carry genetic recipes from a cell's DNA to specialized molecular machines that translate the instructions into the proteins that make up a cell. In contrast, a microRNA molecule is a very short string of RNA that doesn't contain instructions for making proteins but that can bind to parts of messenger RNA sequences that complement its own. As a result, the messenger RNA's sequence can no longer be read by the cell's protein-manufacturing apparatus, gumming up assembly of the protein it encodes.

It's only recently that scientists have started to understand microRNA's critical role.

The researchers in Lu's lab conducted their experiments in Drosophila, the fruit fly, which has previously proved itself a useful model for several neurodegenerative disorders, yielding substantial insights into Parkinson's, Alzheimer's and Huntington's diseases. They observed that certain proteins were being produced at higher-than-normal levels in the fly LRRK2 model of Parkinson's disease. What particularly drew their attention were two proteins that are important in regulating cell division. Mature nerve cells, which no longer divide, should not have high levels of these proteins; when they do, they are prone to premature cell death.

The researchers looked at the mRNAs containing the genetic recipes for the two overproduced proteins, and predicted that they would be bound by two specific microRNAs: let-7 and miR-184. When they then manipulated the activities of those two microRNA species in flies' brains, they had results consistent with the damage associated with Parkinson's. Diminishing the activity of let-7 in dopaminergic , for example, caused both the increased production of one of the suspect proteins and degeneration of the cells.

The researchers showed that toning down the levels of these two proteins, in itself, prevented dopaminergic nerve cell death in the flies. "The flies no longer got symptoms of Parkinson's," said Lu. "This alone has immediate therapeutic implications. Many pharmaceutical companies are already making compounds that act on these two proteins, which in previous studies have been shown to be associated with cancer. It may be possible to take these compounds off the shelf or quickly adapt them for use in non-cancer indications such as Parkinson's."

The researchers then went a step further, showing how the genetic mutation of LRRK2 caused interference of microRNA molecules' ability to inhibit their target mRNAs. It leads to the disruption of a huge complex of molecular machinery that must operate smoothly in order for microRNA to do its job. This link between the common Parkinson's-producing mutation and consequent malfunction is a new finding.

"The clinical impact of our findings may be five to 10 years down the road," Lu said. "But their impact on our understanding of the disease process is immediate. We can now start testing compounds in mammals and cultured human dopaminergic cells to see if they can inhibit overproduction of these proteins and stave off dopaminergic cell death." Currently available drugs for temporarily alleviate its symptoms but can have undesirable side effects, and they don't prevent dopaminergic cells from dying.

Explore further: The impact of bacteria in our guts

Related Stories

Sentry enzyme blocks two paths to Parkinson's disease

Feb 01, 2007

The degeneration of brain cells that occurs in Parkinson's disease may be caused by either externally provoked cell death or internally initiated suicide when the molecule that normally prevents these fatal alternatives is ...

Parkinson's mutation stunts neurons

Nov 22, 2006

Mutations in a key brain protein known to underlie a form of Parkinson's disease wreaks its damage by stunting the normal growth and branching of neurons, researchers have found. They have pinpointed the malfunction of the ...

Recommended for you

The impact of bacteria in our guts

Aug 22, 2014

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

Aug 22, 2014

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

Aug 22, 2014

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments : 6

Adjust slider to filter visible comments by rank

Display comments: newest first

david_saintloth
not rated yet Jul 28, 2010
Totally grounds for a Nobel if this is *the* key pathway that leads to Parkinson's and that there aren't multiple pathways to it.
abadaba
not rated yet Jul 29, 2010
Totally grounds for a Nobel if this is *the* key pathway that leads to Parkinson's and that there aren't multiple pathways to it.

maybe a little overboard. The discovery of the entire RNAi machinery encompassing both miRNA and siRNA won a nobel prize (Fire and Mello). Parkinson's isn't exactly a huge killer either. This is interesting though. A targeted miRNA treatment might be closer to fruition than a gene therapy cure.
MarkyMark
not rated yet Jul 29, 2010
Agreed its a very good step to a possable effective treatment for this very sad disease.
nanotech_republika_pl
not rated yet Aug 01, 2010
The story is written very well indeed but I'm a bit confused what causes what.

Is the following true? The DNA mutation of the region that codes for the two miRNAs (let-7, miR-187) is called LRRK2. Or is that LRRK2 region coding for some protein that is involved in miRNA creation from the DNA?
nanotech_republika_pl
not rated yet Aug 01, 2010
... and then, the miRNAs can't interfere successfully with creation of two types of undwanted proteins (the ones that should be present only when the cell division is needed). What are the names of the those proteins? Surely not LRRK2, right?
nanotech_republika_pl
not rated yet Aug 01, 2010
Or is that the mutation occurs in LRRK2 that codes for a protein that helps miRNA intefere with (and normally stop) production of the unwanted proteins?