Scientists find unsuspected molecular link between obesity and insulin resistance

Jul 21, 2010

A new understanding of insulin resistance and the action of diabetes drugs such as Avandia and Actos could pave the way for improved medications that are more selective and safer, say scientists from Dana-Farber Cancer Institute and The Scripps Research Institute.

"Our findings strongly suggest that good and bad effects of these drugs can be separated by designing second-generation drugs that focus on the newly uncovered mechanism," said Bruce Spiegelman, PhD, of Dana-Farber, senior author on a report appearing in the July 22 issue of Nature.

Avandia and Actos, known generically as and pioglitazone, are widely used to counteract the obesity-related abnormalities in insulin response that lead to diabetes. The drugs act on a master called PPAR-gamma, primarily in , which governs genes involved in the body's response to insulin.

Obesity resulting from a high-fat diet alters the function of PPAR-gamma and disrupts the expression of those insulin response genes, including adipsin and . Avandia and Actos work by binding to PPAR-gamma and reversing the gene expression changes.

The drugs were believed to work by stimulating or "agonizing" the PPAR-gamma receptor, causing it to rev up some genes and dampen the activity of others.

In the Nature report, however, the researchers say they have identified "an entirely new and surprising mechanism by which PPAR-gamma can control whole-body insulin sensitivity." It is mainly through this mechanism, they found, that the diabetes drugs counteract insulin resistance - not their agonist effect on PPAR-gamma. Moreover, they say, agonism of PPAR-gamma may be largely responsible for the harmful drug side effects.

The newly identified pathway linking obesity and insulin response involves cdk5, a , or molecular "switch." When cdk5 is activated by the development of obesity in mice, it causes a chemical change in PPAR-gamma called phosphorylation. In contrast to agonism of PPAR-gamma, phosphorylation has a narrow effect, disrupting a smaller set of genes that lead to insulin resistance.

In addition to agonizing PPAR-gamma, Avandia and Actos also block the phosphorylation of PPAR-gamma by cdk5. It's this latter effect that accounts for most of the drugs' anti-diabetic benefits, the authors contend. "Agonism may not be therapeutically necessary and likely results in a lot of the toxicities," Spiegelman said.

The strength of various drugs' agonist effects on PPAR-gamma doesn't correlate with how well they work, the researchers observe; instead, it is their ability to block cdk5 phosphorylation that counts. In support of this assertion, the paper describes the researchers' findings from patients treated with Avandia in a German clinical trial. It showed that improvements in insulin sensitivity were tightly correlated with decreased phosphorylation of PPAR-gamma.

"I think this is a really important finding, and potentially very timely in light of the current discussions about Avandia," commented Jeffrey Flier, MD, Dean of the Harvard Medical School, a leading researcher in obesity, insulin resistance, and diabetes.

"It may motivate pharmaceutical companies to take another look at compounds acting through PPAR-gamma that were taken to various stages of development but put on hold because they did not demonstrate strong agonism of PPAR-gamma," Flier said. "People may have been focusing on the wrong outcomes."

Avandia and Actos belong to a relatively new class of compounds called thiazolidinediones, the first medications that can reverse . They have been widely used to treat Type 2 diabetes since being approved in 1999. However, in recent years they have been linked in some patients to heart attacks, heart failure, and strokes. Thousands of lawsuits have been filed against the maker of Avandia, and the US Food and Drug Administration is currently weighing whether it should be taken off the market.

Explore further: A novel therapy for sepsis?

Provided by Dana-Farber Cancer Institute

5 /5 (2 votes)

Related Stories

Scientists map molecular regulation of fat-cell genetics

Nov 04, 2008

A research team led by Mitchell Lazar, MD, PhD, Director of the Institute for Diabetes, Obesity, and Metabolism at the University of Pennsylvania School of Medicine, has used state-of-the-art genetic technology to map thousands ...

Protein target for diabetes drug regulates blood pressure

Mar 04, 2008

University of Iowa researchers have identified a molecular pathway in blood vessels that controls blood pressure and vascular function and may help explain why certain drugs for type II diabetes also appear to lower patients' ...

FDA approves new diabetes treatment

Oct 17, 2006

The U.S. Food and Drug Administration has approved the use of Januvia tablets as the first in a new class of diabetes drugs.

Scientists uncover novel anti-diabetes mechanism

Jul 21, 2010

In a joint study, scientists from The Scripps Research Institute and the Dana-Farber Cancer Institute at Harvard University have uncovered a novel mechanism that dramatically increases insulin sensitivity and reduces the ...

Recommended for you

A novel therapy for sepsis?

9 hours ago

A University of Tokyo research group has discovered that pentatraxin 3 (PTX3), a protein that helps the innate immune system target invaders such as bacteria and viruses, can reduce mortality of mice suffering ...

Cellular protein may be key to longevity

Sep 15, 2014

Researchers have found that levels of a regulatory protein called ATF4, and the corresponding levels of the molecules whose expression it controls, are elevated in the livers of mice exposed to multiple interventions ...

Gut bacteria tire out T cells

Sep 15, 2014

Leaky intestines may cripple bacteria-fighting immune cells in patients with a rare hereditary disease, according to a study by researchers in Lausanne, Switzerland. The study, published in The Journal of Experimental Me ...

User comments : 0