Unlocking the secrets of cellular energy holds promise for obesity, diabetes and cancer

Jul 20, 2010

(PhysOrg.com) -- A breakthrough on how cells regulate their energy is promising for clinical gains into diseases such as obesity, diabetes and cancer. Researchers at McGill University and University of Pennsylvania have uncovered new insights into how a protein known as the AMP-activated protein kinase, or AMPK, a master regulator of metabolism, controls how our cells generate energy. AMPK has previously been linked to a number of biological functions including cancer, diabetes, and proper immune function.

In discovering these new functions of AMPK, researchers are one step closer to understanding how cells in the body manage their energy resources. The team discovered that AMPK plays a role in this process in part by directly modifying , acting as a type of cell energy "rheostat." Their findings are published in the journal Science.

McGill Professor Russell Jones, of the Rosalind and Morris Goodman Centre in the Department of Physiology in the Faculty of Medicine; Shelley Berger, PhD, Prof. Daniel S. Och, and David Bungard, PhD, a postdoctoral fellow in the Berger lab, in collaboration with Dr. Craig Thompson, MD, director of the Abramson Cancer Center of the University of Pennsylvania, found that AMPK mediates "epigenetic regulation" of gene expression by binding directly to sites on chromosomes.

"What we have discovered is a paradigm shift concerning the role of AMPK," Jones explained. "It has long been known that AMPK can affect how genes are turned on and off, but we have been in the dark as to how this actually works. We found that when cells are subjected to an energy crisis, AMPK goes directly to specific genes and turns them on. This allows cells to adapt to the environmental stress and lets them survive."

Unlike genetic changes, which involve a change or mutation in DNA sequence, epigenetic changes in the nucleus leave the DNA sequence unaltered but modify the , which comprise the backbone of the chromosome. Histones are proteins found in the nucleus that package and order DNA into structural units. Epigentic changes alter how DNA folds in chromosomes, changing how accessible genes are to regulatory proteins and enzymes that copy genes into RNA messages.

"The discovery that AMPK goes directly to the DNA to affect gene transcription is a breakthrough in our understanding how signals from outside the cell are transmitted to change gene expression," said Jones. "It is like an electrical circuit. We have figured out how AMPK mediates the connection."

Thus far, the investigators have identified two genes that are regulated by AMPK at the histone level in the nucleus. These initial observations were made in tissue-culture cells and the team is now working to confirm them in animal models.

AMPK's main role is to sense cell stress. In this study, cells were stressed with ultraviolet radiation and low levels of glucose, a common source of cell energy. In the sequence of events after stress, AMPK picks up the cell-stress signal and travels to the nucleus to bind to the tumor suppressor gene p53. This in turn, causes a phosphate to be added to a histone near the p21 gene, which activates transcription. The function of the p21 protein is to stop or slow down the cell cycle.

The researchers were surprised by this finding on many fronts: This is the first time that investigators have shown that AMPK is present on chromatin, that it targets histones, and that p53 is involved in sensing stress via AMPK.

The work conducted by the researchers holds promise for new therapies for a number of diseases including diabetes and cancer. For example, AMPK is a target of metformin, the most commonly prescribed drug for the treatment of Type II diabetes. By understanding how AMPK can directly change gene expression, this may lead to the identification of new disease-associated targets and potential therapies.

Explore further: Growing a blood vessel in a week

Related Stories

Gene predicts heart attack response and cardiac damage

Jan 30, 2008

A protein has been found that influences the response of the heart to a lack of oxygen and blood flow, such as occurs during a heart attack, a team of Yale School of Medicine researchers report today in Nature.

Well-known enzyme is unexpected contributor to brain growth

Mar 12, 2009

An enzyme researchers have studied for years because of its potential connections to cancer, diabetes, heart disease, hypertension and stroke, appears to have yet another major role to play: helping create and maintain the ...

Power-boosting signal in muscle declines with age

Feb 06, 2007

As people age, they may have to exercise even harder to get the benefits afforded to younger folk. That's the suggestion of a report in the February issue of the journal Cell Metabolism, published by Cell Press, showing that a ...

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0