Scientists devise strategy in bid to beat viruses

Jul 19, 2010

Scientists have developed a new way to target viruses which could increase the effectiveness of antiviral drugs.

Instead of attacking the itself, the method developed at the University of Edinburgh alters the conditions which viruses need to survive and multiply.

By making the site of infection less hospitable for the virus, the virus becomes less able to mutate and build up resistance to drugs. The researchers were also able to target more than one virus at the same time.

Viruses take up residence in host cells within our body, which produce proteins that enable the virus to multiply and survive.

The study, published in the journal (PNAS), analysed molecules known as microRNAs, which regulate how much of these proteins are made.

The scientists were able to manipulate the microRNA levels, which enabled them to control a network of proteins and stop viruses from growing.

Most existing antiviral therapies only work against one virus. However, by adapting the virus host environment the researchers were able to target different types of viruses.

It is hoped that the research could lead to new treatments for patients suffering from a range of infections.

Dr Amy Buck, of the University's Centre for Immunity, Infection & Evolution, said: "A problem with current antiviral therapies, which generally target the virus, is that viruses can mutate to become resistant. Since new viral strains emerge frequently, and many infections are difficult to diagnose and treat, it is important to find new ways of targeting infection. Our hope is that we will be able to use host-directed therapies to supplement the natural response and disable viruses by taking away what they need to survive."

Scientists studied the herpes family of viruses, which can also cause cancer with the Epstein-Barr virus, and the Semliki Forest virus, which is mainly spread by mosquitoes.

Both viruses have different characteristics. Viruses from the herpes family replicate inside the nuclei of cells, while the Semliki Forest multiplies outside the nucleus of a cell.

Further research has begun to look at how this method could be used to target influenza.

Explore further: First vital step in fertilization between sperm and egg discovered

Provided by University of Edinburgh

5 /5 (3 votes)

Related Stories

Fighting drug-resistant flu viruses

Jul 15, 2009

Amid reports that swine flu viruses are developing the ability to shrug off existing antiviral drugs, scientists in Japan are reporting a first-of-its kind discovery that could foster a new genre of antivirals ...

Structure of hepatitis B virus mapped

Jul 28, 2008

Using a newly developed method, Utrecht University researchers have mapped the structure and composition of the hepatitis B virus. The researchers were able to map the structure by spraying the virus.

The genetic secrets to jumping the species barrier

Feb 11, 2010

Scientists have pinpointed specific mutations that allow a common plant virus to infect new species, according to research published in the March issue of the Journal of General Virology. Understanding the genetics of the ...

Recommended for you

Researchers transplant regenerated oesophagus

Apr 15, 2014

Tissue engineering has been used to construct natural oesophagi, which in combination with bone marrow stem cells have been safely and effectively transplanted in rats. The study, published in Nature Communications, shows ...

User comments : 0

More news stories

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...