It Takes 'Guts' to Explore the Next Proteomics Frontier

Jul 16, 2010
Image from “The Termite Gut: Nature’s Microbial Bioreactor for Digesting Wood and Making Biofuels,” U.S. DOE Genomic Science Program.

(PhysOrg.com) -- In the quest to find new sources of biofuel, researchers are studying one of the most efficient bioreactors on earth: the termite. The same insect that causes distress to homeowners with its wood-consuming abilities also provides scientists with a fascinating area of study: the symbiotic microbial community that enables the termite to digest wood cellulose.

Researchers at Pacific Northwest National Laboratory analyzed the metaproteome—all proteins—of the bacterial community that lives in the hindgut paunch segment of the wood-feeding "higher" termite (Nasutitermes). Their goal: to define the contribution and sources of enzymes from the community to the insect.

Initially, they hoped this information would lead to identifying new and novel celluloses, which in turn could provide raw materials for the synthesis of . However, while such insights remain elusive, they still gained biological insights into the necessary associations of this symbiotic system from their analyses, thus advancing understanding of the microbial community function in the termite gut and eventually pointing to important interactions in the degradation of wood products.

This work represents an important advancement of community proteomics efforts that can impact studies of any microbial community. Community proteomics is emerging as the next proteomics frontier—where the precise genome of the organisms being studied is unknown. play important roles across the biosphere from carbon and nutrient cycling in the atmosphere to impacting and protecting human health.

Molecular snapshot of enzymes (illustrated as Enzyme Commission numbers) identified in the termite hindgut microbial community and their main processes. (PFOR EC:1.2.7.-)

Using mass spectrometry-based global proteomics strategies available through EMSL, the PNNL team identified 886 proteins, 197 of which are known to be enzymes. Using these enzymes, the researchers reconstructed complete . These pathways revealed such important functions as transport and metabolism, and assimilation, energy production, and amino acid synthesis. Perhaps of greatest significance was determining the high level of redundancy of a protein important to nitrogen fixation and the breakdown of glucose: pyruvate ferredoxin/flavodoxin oxidoreductase (PFOR EC: 1.2.7.-). It has been reported that Nasutitermes lacks measurable pyruvate dehydrogenase activity in its tissues; therefore, bacterial PFOR may be critical to making nitrogen and acetate available to the termite.

"Our observations could not have been developed without reconstructing known bacterial metabolic pathways, and placing these pathways in context to what is currently known about metabolic pathways in the termite host," said Dr. Kristin Burnum, a PNNL biochemist and first author of a manuscript that appears in The ISME Journal.

What's Next. Understanding the symbiotic relationship between the community and the termite is only the first step in the elucidation of cellulose degradation in the system. While this work suggests that the activity associated with these enzymes in the community may play more of a role in the symbiotic relationship between the hindgut microbial community and its termite host than activities related to cellulose degradation, these results create a framework for future studies on all insect-microbial community studies to explore new cellulose-degrading activities.

Explore further: Students use physics to unpack DNA, one molecule at a time

More information: Burnum KE, SJ Callister, CD Nicora, SO Purvine P Hugenholtz, F Warnecke, RH Scheffrahn, RD Smith, and MS Lipton. 2010. "Proteome Insights into the Symbiotic Relationship between a Captive Colony of Nasustitermes corniger and its Hindgut Microbiome." The ISME Journal, advance online publication July 8, 2010, doi:10.1038/ismej.2010.97

add to favorites email to friend print save as pdf

Related Stories

Diuscovery in amber reveals ancient biology of termites

May 14, 2009

The analysis of a termite entombed for 100 million years in an ancient piece of amber has revealed the oldest example of "mutualism" ever discovered between an animal and microorganism, and also shows the ...

Revealing the metabolic activity of microbial communities

May 11, 2010

Microbial communities are performing important functions all around us - from the earth in our flowerpots to the human gut. Now researchers have developed a method for studying the metabolic functions of microbial ...

Recommended for you

Fighting bacteria—with viruses

2 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

2 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0