Microbial protein restores vision in blind animals

Jul 14, 2010
Microbial protein restores vision in blind animals
Cross section of a degenerated Retinitis pigmentosa retina. The archaebacterial halorhodopsin is produced in the remaining cone photoreceptor cells (green). Only one row of photoreceptor cells is left. In white the nuclear layers of the retina.

(PhysOrg.com) -- Scientists from the Friedrich Miescher Institute for Biomedical Research (FMI) restore vision in retinitis pigmentosa using an archaebacterial protein. Introducing halorhodopsin into the remaining but nonfunctional cone photoreceptors of the retina of mice not only reactivates the cone cells' ability to interact with the rest of the visual system, it also prompts sophisticating visually guided behavior.

With their collaborators in the Vision Institute of Paris, the scientists were able to validate their results in light-insensitive human retinas in vitro, which were able to respond to light again after treatment. These groundbreaking results were published today in the journal Science.

Retinitis pigmentosa is a diverse group of hereditary diseases that lead to incurable blindness and affect two million people worldwide. Despite the diversity of its cause, the manifestation of the disease is similar: the highly sensitive rod photoreceptors, which allow us to see in the dusk, die. Intriguingly, the cones that operate during daylight and are responsible for high-resolution survive longer, though they gradually lose their function. However, it was unknown if these persisting photoreceptors would be accessible for .

Neurobiologists from Botond Roska's group at the Friedrich Miescher Institute for Biomedical Research, which is part of the Novartis Research Foundation, now have devised a gene therapeutic method to restore the functionality of the cone cells in models of retinitis pigmentosa. In a groundbreaking approach they used a light-sensitive protein called halorhodopsin from archaebacteria to re-establish vision.

In their work, featured today in the reknown journal Science, they were not only able to specifically produce halorhodopsin in the dormant cone cells of mice with retinitis pigmentosa, but they could also show that the cones were able to interact with the rest of the visual system. The existing network of cells was able to reproduce many of the functions of the complicated cascade of molecular events that turn a unit of light into a neuronal signal. What is more, behavioral tests indicated that the retinal information was used for visually guided behavior. The remaining cone cells are therefore an optimal target for gene-therapeutic intervention in disease where photoreceptor function is lost.

As a first step to translate these findings to patients, together with their collaborators from the Vision Institute of Paris, the FMI group introduced the archaebacterial halorhodopsin into nonfunctional human . And these treated cones in isolated human retinas started to respond to light.

"We believe that with our gene therapeutic method we have found a powerful approach that could eventually help a subset of patients. Our colleagues in Paris are screening patients to determine who may benefit most from this approach," comments Botond Roska.

Explore further: Novel marker discovered for stem cells derived from human umbilical cord blood

More information: Busskamp V, Duebel J, Balya D, Fradot M, Viney JT, Siegert S, Groner AC, Cabuy E, Forster V, Seeliger M, Biel M, Humphries P, Paques M, Mohand-Said S, Trono D, Deisseroth K, Sahel JA, Picaud S, Roska B.(2010) Genetic Reactivation of Cone Photoreceptors Restores Visual Responses in Retinitis Pigmentosa. Science, DOI:10.1126/science.1190897

Provided by Friedrich Miescher Institute for Biomedical Research

5 /5 (8 votes)

Related Stories

Sight recovery in mice

Jun 24, 2010

Swiss researchers from the Friedrich Miescher Institute, in collaboration with Inserm researchers from CNRS and UPMC in the Institut de la Vision, have restored sight to mice afflicted with retinitis pigmentosa. The results ...

Study: Antioxidants may slow vision loss

Jul 19, 2006

U.S. scientists say they've blocked the advance of retinal degeneration in mice with a form of retinitis pigmentosa by treating them with antioxidants.

Making the blind see: Gene therapy restores vision in mice

Mar 31, 2010

Take a look at this: Scientists from Buffalo, Cleveland, and Oklahoma City made a huge step toward making the blind see, and they did it by using a form of gene therapy that does not involve the use of modified viruses. In ...

Developing gene therapy to fight blindness

Jul 29, 2009

An international team of scientists and clinicians from the United States and Saudi Arabia are working to develop gene therapy for treating a rare, hereditary retinal disease. The therapy has been shown to restore lost vision ...

Scientists successfully awaken sleeping stem cells

Mar 18, 2008

Scientists at Schepens Eye Research Institute have discovered what chemical in the eye triggers the dormant capacity of certain non-neuronal cells to transform into progenitor cells, a stem-like cell that can generate new ...

Recommended for you

New pain relief targets discovered

7 hours ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Building 'smart' cell-based therapies

7 hours ago

A Northwestern University synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other ...

Proper stem cell function requires hydrogen sulfide

10 hours ago

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

User comments : 0

More news stories

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...