Ultrasound puts water back in the Murray Darling

Jul 12, 2010
Honeycomb-like structure which retains significant amount of water in tailings before ultrasonic treatment. Credit: Jason Du

You may not be able to squeeze blood out of a stone but, by applying the right amount of ultrasound during processing, Jianhua (Jason) Du and colleagues from the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE, Australia) have been able to squeeze a considerable amount of fresh water from mining waste.

As well as conserving water the technique reduces the waste bulk, which could also save mining companies millions of dollars in operational costs and help postpone significant capital expenditure, Jason says. Jason is one of sixteen winners of the national 2010 Fresh Science program - highlighting the work of leading young scientists.

“When we looked at one of Rio Tinto’s mines in the Murray Darling Basin, we found our method could potentially save 436 megalitres of water a year. That’s more than 170 Olympic swimming pools back into the Basin’s water reserves - so that’s a win for the environment as well as lower costs for the company.”

Between 400 and 600 litres of water are needed to process each tonne of ore. As a result, water makes up between 60 and 95 per cent of the more than 10 billion tonnes of tailings that mineral processing produces each year worldwide.

Some of this liquid is recovered by letting the solids settle in tailings ponds, a process that is aided by the addition of thickeners. But these are low in efficiency. What Jason and his colleagues found is that efficiency can be increased by pumping in the right amount of ultrasonic energy at the right time.

Although in their laboratory-scale trial the technique successfully increased the output of solids only by about 4 per cent by weight, on the scale of a large mine this represents a huge amount of water.

“At one of Rio Tinto’s mines outside Australia, we calculated the saving to be about 3.5 gigalitres (or 3,500 megalitres) a year, worth more than A$5.5 million to the company.”

Jason and his colleagues, based at the University of South Australia, used an electron microscope to examine the structure of the solids which formed after flocculants were introduced in the thickener. They found a network similar to honeycomb in which the water was trapped. The ultrasonic energy disrupts this network and leads to a denser aggregation. “It’s like shaking up a jar full of flour in a way which causes the flour to compact down,” Jason says.

The less incorporated during processing also means the smaller the landfill site needed for containment. Together with lesser amounts of equipment and time needed to manage the disposal process, this lowers costs even further.

Explore further: Coastal defences could contribute to flooding with sea-level rise

add to favorites email to friend print save as pdf

Related Stories

'Air shower' set to cut water use by 30 percent

Nov 09, 2006

As Australians become increasingly alert to the importance of using water wisely in the home, CSIRO researchers have found a way to use a third less water when you shower – by adding air.

Track Koalas From Space

Jul 28, 2004

Satellite technology will be used to track koalas as part of a ground-breaking new research program between The University of Queensland and major mining company Rio Tinto Coal Australia (RTCA). Koalas at the ...

Rio Grande River basin snow is studied

Jul 18, 2005

A multi-million dollar, 10-year study is under way in the Rio Grande basin to track the water cycle from the river's Colorado headwaters across New Mexico.

Lithium to be extracted from geothermal waste

Dec 14, 2009

(PhysOrg.com) -- A technique developed by a Californian company, Simbol Mining, will enable the valuable mineral lithium, widely used in high-density batteries, to be reclaimed from the hot waste water produced ...

Older filters, fresher water

Nov 26, 2007

Scientists in Australia have discovered that the older the water filter the better when it comes to reducing the off-putting earthy taste of some tap water. Writing in the Inderscience publication International Journal of ...

Recommended for you

Tracking giant kelp from space

14 hours ago

Citizen scientists worldwide are invited to take part in marine ecology research, and they won't have to get their feet wet to do it. The Floating Forests project, an initiative spearheaded by scientists ...

Heavy metals and hydroelectricity

16 hours ago

Hydraulic engineering is increasingly relied on for hydroelectricity generation. However, redirecting stream flow can yield unintended consequences. In the August 2014 issue of GSA Today, Donald Rodbell of ...

What's wiping out the Caribbean corals?

17 hours ago

Here's what we know about white-band disease: It has already killed up to 95 percent of the Caribbean's reef-building elkhorn and staghorn corals, and it's caused by an infectious bacteria that seems to be ...

User comments : 0