New discovery in nerve regrowth

Jul 12, 2010

Faculty of Medicine scientists have discovered a way to enhance nerve regeneration in the peripheral nervous system. This important discovery could lead to new treatments for nerve damage caused by diabetes or traumatic injuries. Peripheral nerves connect the brain and spinal cord to the body, and without them, there is no movement or sensation. Peripheral nerve damage is common and often irreversible. This discovery is published in the July 7, 2010 edition of the Journal of Neuroscience.

Senior researcher on the study, Dr. Douglas Zochodne, is a neurologist and professor in the Department of Clinical Neurosciences. Kimberly Christie, lead author on the study and a PhD student in Dr. Zochodne's lab, along with Hotchkiss Brain Institute colleagues, used a rat model to examine a pathway that helps nerves to grow and survive. Within this pathway is a molecular brake, called PTEN, that helps to prevent excessive cell growth under normal conditions.

In addition to discovering for the first time that PTEN is found in the , Zochodne's team demonstrated that following nerve injury, PTEN prevents peripheral nerves from regenerating. The team was able to block PTEN, an approach that dramatically increased nerve outgrowth.

Kimberly Christie says, "We were amazed to see such a dramatic effect over such a short time period. No one knew that nerves in the peripheral system could regenerate in this way, nerves that can be damaged if someone has diabetes for example. This finding could eventually help people who have lost feeling or motor skills recover and live with less pain."

Peripheral can lead to pain, tingling, numbness or difficulty coordinating hands, feet, arms or legs. This can happen with diseases like diabetes, an injury due to a crushed or cut nerve, or other conditions known as neuropathy.

"Removing the brakes on regeneration offers us a new approach. Our next steps will be to find out if the exciting rise in nerve outgrowth we have observed will result in long term benefits," says Zochodne.

Explore further: Tackling neurotransmission precision

add to favorites email to friend print save as pdf

Related Stories

Company Develops a New Approach to Nerve Repair

Mar 12, 2007

A new company, Neurotex Ltd, has been established to develop novel silk-based materials that have the potential to provide a new generation of nerve repair materials and treatments.

Bone marrow cells can heal nerves in diabetes model

Feb 04, 2009

Transplanting cells that replenish blood vessels can also restore nerve function in an animal model of diabetic neuropathy, Emory researchers have found. The results are described online this week in the journal Circulation.

Nerves under control

May 12, 2010

The proper transmission of nerve signals along body nerves requires an insulation layer, named myelin sheath. To be efficient this sheath is designed to have a certain thickness and Swiss researchers from ...

The dormant potential of damaged nerve cells

Jul 13, 2009

(PhysOrg.com) -- Damaged nerve cells in a finger will regrow, but those in the spinal cord do not. Why the difference? Scientists at the Max Planck Institute for Neurobiology working with an international ...

Recommended for you

Tackling neurotransmission precision

17 hours ago

Behind all motor, sensory and memory functions, calcium ions are in the brain, making those functions possible. Yet neuroscientists do not entirely understand how fast calcium ions reach their targets inside ...

What makes kids generous? Neuroscience has some answers

17 hours ago

It's no secret that people are judgmental, and young children are no exception. When children witness "good" or "bad" behavior, their brains show an immediate emotional response. But, according to a study ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.