Nanogenerators for energy harvesting technology

Jul 09, 2010

The journal, Nano Letters, recently published an article highlighting the fascinating nanogenerators developed by Dr. Yong Shi, a professor in the Mechanical Engineering Department at Stevens Institute of Technology. The paper was entitled, "1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers."

Dr. Shi's work focuses on miniature technologies that could potentially wireless electronics, portable devices, stretchable electronics, and implantable biosensors. The concept involves piezoelectric nanowire- and nanofiber-based generators that would power such devices through a conversion of mechanical energy into electrical energy. Dr. Shi uses a piezoelectric nanogenerator based on PZT nanofibers.

The PZT nanofibers, with a diameter and length of approximately 60 nm and 500 ěm, are aligned on interdigitated electrodes of platinum fine wires and packaged using a soft polymer on a silicon substrate. The measured output voltage and power under periodic stress application to the soft polymer was 1.63 V and 0.03 MicroWatts, respectively.

This amazing breakthrough in piezoelectric nanofiber research has incredible potential to enable new technology development across a multitude of science and engineering industries and related research.

"One of the major limitations of current active implantable biomedical devices is that they are battery powered. This means that they either have to be recharged or replaced periodically. Dr. Shi's group has demonstrated a technology that will allow implantable devices to recover some of the in flowing blood or peristaltic fluid movement in the GI tract to power smart implanable biometical devices," says, Dr. Arthur Ritter, Director of Biomedical Engineering at Stevens.

"The fact that his technology is based on nano-structures makes possible power supplies for nano-robots that can exist in the blood stream for extended periods of time and transmit diagnostic data, take samples for biopsy and/or send images wirelessly to external data bases for analysis."

Explore further: Team finds electricity can be generated by dragging saltwater over graphene

More information: pubs.acs.org/doi/abs/10.1021/nl100812k

Provided by Stevens Institute of Technology

4.9 /5 (8 votes)

Related Stories

New fiber nanogenerators could lead to electric clothing

Feb 12, 2010

(PhysOrg.com) -- In research that gives literal meaning to the term "power suit," University of California, Berkeley, engineers have created energy-scavenging nanofibers that could one day be woven into clothing ...

Running Hamsters Can Power Nano Devices (Video)

Feb 12, 2009

(PhysOrg.com) -- Among the vast number of untapped energy sources are finger taps, heartbeats, and even hamsters running on exercise wheels. In a recent study, researchers from Georgia Tech have shown that ...

Recommended for you

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

trekgeek1
not rated yet Jul 09, 2010
Place it near the diaphragm.
HealingMindN
not rated yet Jul 09, 2010
Nano-bots in the bloodstream. Please don't tell the politicians. They'll say everyone should have it.
xamien
not rated yet Jul 10, 2010
Healingmind, please refrain from being alarmist. Our literature has plenty of warning even for the most illiterate members of society to understand the dangers of taking something like this to extremes.

More news stories

Physicists create new nanoparticle for cancer therapy

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...