RXTE Homes in on a Black Hole's Jets

Jul 01, 2010 by Francis Reddy
XTE J1550-564 is a binary system in which an evolved star orbits -- and donates matter to -- a black hole estimated at 10 times the sun's mass. Credit: ESO/L. Calcada

(PhysOrg.com) -- For decades, X-ray astronomers have studied the complex behavior of binary systems pairing a normal star with a black hole. In these systems, gas from the normal star streams toward the black hole and forms a disk around it. Friction within the disk heats the gas to millions of degrees -- hot enough to produce X-rays. At the disk's inner edge, near the black hole, strong magnetic fields eject some of the gas into dual, oppositely directed jets that blast outward at about half the speed of light.

That's the big picture, but the details have been elusive. For example, do most of the arise from the jets? The disk? Or from a high-energy region on the threshold of the black hole?

Now, astronomers using NASA's Rossi X-ray Timing Explorer (RXTE) satellite, together with optical, infrared and radio data, find that, at times, most of the X-rays come from the jets.

" have suggested this possibility for several years, but this is the first time we've confirmed it through multiwavelength analysis," said David Russell, lead author of the study and a post-doctoral researcher at the University of Amsterdam.

Russell and his colleagues looked at a well-studied outburst of the black-hole binary XTE J1550-564. The system lies 17,000 light-years away in the southern constellation of Norma and contains a black hole with about 10 times the sun's mass. The usually inconspicuous binary was discovered by RXTE in 1998, when the system briefly became one of the brightest X-ray sources in the sky.

Between April and July 2000, the system underwent another outburst. RXTE monitored the event in X-rays, with some additional help from NASA's Chandra X-ray Observatory. Optical and infrared observations covering the outburst came from the YALO 1-meter telescope at Cerro Tololo Inter-American Observatory in Chile, while radio observations were collected by the Australia Compact Array.

Drawing on these data, Russell and his team reconstructed a detailed picture of X-ray emission during the outburst. The study appears in the July 1 edition of Monthly Notices of the Royal Astronomical Society.

"We suspect that these outbursts are tied to increases in the amount of mass falling onto the black hole," explained Russell. "Where and how the emission occurs are the only clues we have to what's going on."

As the outburst began in mid-April 2000, the system's brightest X-ray emission was dominated by higher-energy ("hard") X-rays from a region very close to the black hole.

In April 2000, XTE J1550-564 erupted. The blue line indicates the energy and brightness of X-rays from the system as detected by NASA's Rossi X-ray Timing Explorer. Insets show where the X-rays are thought to originate in the vicinity of the black hole. From June to September, the system's particle jets produced most of the X-rays. Credit: NASA/RXTE

"We think the source of these X-rays is a region of very energetic electrons that form a corona around the innermost part of the disk," Russell said. When these electrons run into photons of visible light, the collision boosts the photons to hard X-ray energies, a process known as inverse Compton scattering. The jets were present, but only minor players.

Over the next couple of weeks, the peak X-ray emission moved to lower ("softer") energies and seems to have come from the dense gas in the accretion disk. At the same time, the hot disk quenched whatever process powers the jets and shut them down.

By late May 2000, XTE J1550-564's accretion disk was cool enough that the jets switched on again. Most of the X-rays, which were fainter but higher in energy, again came from scattering off of energetic electrons close to the black hole.

In early June, as the system faded and its peak emission gradually softened, the jets emerged as the main X-ray source. In the jet, electrons and positrons moving at a substantial fraction of light speed emit the radiation as they encounter magnetic fields, a process called synchrotron emission.

The jets require a continuous supply of particles with energies of a trillion electron volts -- billions of times the energy of visible light. "The total energy bound up in the jet is enormous, much larger than previously thought," Russell said.

As summer wore on, the jets gradually faded and their X-ray emission softened. By September, the system's brightest X-rays came from high-speed blobs of matter that the jets had hurled into space during previous eruptions.

"We're really beginning to get a handle on the 'ecology' of these extreme systems, thanks in large part to RXTE," Russell added. "We can apply what we've learned in nearby binaries like XTE J1550 to the supersized black holes and jets found at the centers of galaxies."

Launched in 1995, RXTE is still going strong. "Of currently operating NASA missions, only Hubble has been working longer," said Tod Strohmayer, the mission's project scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. RXTE's unique capabilities provide insight into accreting and neutron and allow it to detect short, faint outbursts that are easily missed by other current missions exploring the X-ray regime.

Explore further: Can astronomy explain the biblical Star of Bethlehem?

More information: www.nasa.gov/centers/goddard/missions/rxte.html

Related Stories

Suzaku catches retreat of a black hole's disk

Dec 10, 2009

(PhysOrg.com) -- Studies of one of the galaxy's most active black-hole binaries reveal a dramatic change that will help scientists better understand how these systems expel fast-moving particle jets.

An Intriguing, Glowing Galaxy

May 14, 2009

A supermassive black hole may be responsible for the glowing appearance of galaxy 3C 305, located about 600 million light years away in the constellation Draco. Composite data from NASA’s Chandra X-ray Observatory ...

Fermi Telescope Peers Deep into Microquasar (w/ Video)

Nov 27, 2009

(PhysOrg.com) -- NASA's Fermi Gamma-ray Space Telescope has made the first unambiguous detection of high-energy gamma-rays from an enigmatic binary system known as Cygnus X-3. The system pairs a hot, massive ...

Ghost remains after black hole eruption

May 28, 2009

NASA's Chandra X-ray Observatory has found a cosmic "ghost" lurking around a distant supermassive black hole. This is the first detection of such a high-energy apparition, and scientists think it is evidence ...

X-Ray Jets from Galaxies

Oct 19, 2009

(PhysOrg.com) -- Some dramatic galaxies eject gigantic, collimated jets of ionized gas millions of light-years long, powered by the massive black holes at their centers. The ionized jets are detected at radio ...

VLBA locates superenergetic bursts near giant black hole

Jul 02, 2009

(PhysOrg.com) -- Using a worldwide combination of diverse telescopes, astronomers have discovered that a giant galaxy's bursts of very high energy gamma rays are coming from a region very close to the supermassive ...

Recommended for you

Can astronomy explain the biblical Star of Bethlehem?

Dec 24, 2014

Bright stars top Christmas trees in Christian homes around much of the world. The faithful sing about the Star of Wonder that guided the wise men to a manger in the little town of Bethlehem, where Jesus was ...

Hubbles spies the beautiful galaxy IC 335

Dec 24, 2014

This new NASA/ESA Hubble Space Telescope image shows the galaxy IC 335 in front of a backdrop of distant galaxies. IC 335 is part of a galaxy group containing three other galaxies, and located in the Fornax ...

Image: Multicoloured view of supernova remnant

Dec 22, 2014

Most celestial events unfold over thousands of years or more, making it impossible to follow their evolution on human timescales. Supernovas are notable exceptions, the powerful stellar explosions that make ...

Ultra-luminous X-ray sources in starburst galaxies

Dec 22, 2014

Ultra-luminous X-ray sources (ULXs) are point sources in the sky that are so bright in X-rays that each emits more radiation than a million suns emit at all wavelengths. ULXs are rare. Most galaxies (including ...

When a bright light fades

Dec 22, 2014

Astronomer Charles Telesco is primarily interested in the creation of planets and stars. So, when the University of Florida's giant telescope was pointed at a star undergoing a magnificent and explosive death, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.