Ultrafine particles in air pollution may heighten allergic inflammation in asthma

Jul 01, 2010
Exposure to ultrafine particles generated significantly stronger oxidative stress (lower left panel) and allergic inflammation (lower right panel) deep in the lung. Credit: UCLA

A new academic study led by UCLA scientists has found that even brief exposure to ultrafine pollution particles near a Los Angeles freeway is potent enough to boost the allergic inflammation that exacerbates asthma.

Published online in the American Journal of Physiology-Lung Cellular and Molecular Physiology in June, the study shows that the tiniest air pollutant particles ― those measuring less than 180 nanometers, or about one-thousandth the width of a human hair ― incited inflammation deep in the lungs. The researchers used a "real-time" testing method in an animal model to isolate the effects of vehicular emission particles on the immune response in the lung.

Since these ultrafine particles are primarily derived from vehicular emissions and are found in highest concentrations on freeways, the results have particular significance for the study of the impact of traffic-related emissions on asthma flares in urban areas.

The findings also point to the importance of understanding the role air-pollution particles play in asthma flares in order to develop new approaches for asthma therapy.

"The immune processes involved in asthma, and current treatments, are traditionally thought to be dominated by a specific initial immune response, but our study shows that ultrafine may play an important role in triggering additional pathways of inflammation that heighten the disease," said the study's principal investigator, Dr. Andre E. Nel, professor of medicine and chief of nanomedicine at the David Geffen School of Medicine at UCLA.

Pollution particles emitted by vehicles and other combustion sources are coated with a layer of organic chemicals that can be released into the lungs. These chemicals generate free oxygen radicals, which excite the immune system in the lung through a cell- and tissue-

damaging process known as oxidation. Oxidation contributes to allergic inflammation in the lungs of people with asthma.

Although other studies have shown that larger air-pollution particles can cause an oxidative response in asthma, this is the first study to show that real-time breathing of collected ultrafine pollutant particles triggers the same reaction and may even be more damaging, due to the particles' tiny size, the researchers noted.

Because of their size and large surface area, ultrafine particles have the capacity to carry and deposit a rich load of active organic chemicals deep in the lung. The chemicals coming off the particles in the small airways in the lung promote oxidative stress at those sites.

In the study, researchers initially gave mice a surrogate allergen, similar to exposing humans to an allergen such as pollen. After further sensitization, half the mice received ultrafine pollutants, taken in real time near a freeway in downtown Los Angeles, while the other half breathed filtered air.

The study utilized sophisticated exposure technologies developed by Dr. Costas Sioutas, the Fred Champion Professor of Civil and Environmental Engineering at the University of Southern California and co-director of the Southern California Particle Center. The multicampus team also included researchers from Michigan State University and the University of California, Irvine. The research at the Southern California Particle Center and the UCLA Asthma and Allergic Disease Center was funded by the U.S. Environmental Protection Agency and the National Institutes of Health.

Researchers found that exposure to air containing ultrafine particles for a few hours a day over five days significantly enhanced allergic airway inflammation, which correlated to the changes found in the immune system and genes expressed. Scientists discovered that the most profound effects of the allergic inflammation were observed deep in the lung.

"We found that even small exposure amounts to the ultrafine particles could boost the pro-inflammatory effects," said first author Ning Li, an assistant researcher in the UCLA Division of Nanomedicine.

The level of ultrafine particle exposure in the study was two to five times higher than levels commuters are subject to while traveling in their vehicles on Los Angeles freeways.

Researchers noted that the development of asthma may be more complicated than originally thought, with mounting evidence pointing to the involvement of additional pathways of immune activity associated with the effects of oxidative stress.

"A number of new therapies are now targeting the role of oxidative stress in asthma exacerbation," Nel said. "One possible strategy may be the use of antioxidants that may interfere with development of oxidative stress."

In addition to new considerations for asthma treatment, the study findings may also help epidemiologists further establish the link between surges of pollutants near freeways and asthma flares and to pinpoint the amount of ultrafine particle concentrations involved.

The next stage of research will help identify the chemical components responsible for boosting the effect of particulate pollutants on the found in asthma and will explore the immunological mechanisms behind it at the molecular level.

, which affects 15 to 20 million people in the United States, is a chronic inflammatory disease of the small airways in the lung and can trigger acute episodes of airway tightening and wheezing.

Explore further: Recorded Ebola deaths top 7,000

Provided by University of California - Los Angeles

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Time spent in car drives up air pollution exposure

Oct 30, 2007

The daily commute may be taking more of a toll than people realize. A new study by researchers at the University of Southern California (USC) and the California Air Resources Board found that up to half of Los Angeles residents’ ...

City Kids May Breathe Easier in the Country

Mar 10, 2009

Children with asthma have an easier time breathing if they spend even a few days in the country, safeguarded from urban air pollution, a study led by Giovanni Piedimonte, M.D., professor and chairman of the Department of ...

Diesel exhaust fumes affect people with asthma, study finds

Dec 06, 2007

Diesel exhaust fumes on polluted streets have a measurable effect on people with asthma, according to the first study looking at exhausts and asthma in a real-life setting, published on 6 December in the New England Journal of ...

Recommended for you

Recorded Ebola deaths top 7,000

22 hours ago

The worst Ebola outbreak on record has now killed more than 7,000 people, with many of the latest deaths reported in Sierra Leone, the World Health Organization said as United Nations Secretary-General Ban ...

Liberia holds Senate vote amid Ebola fears (Update)

Dec 20, 2014

Health workers manned polling stations across Liberia on Saturday as voters cast their ballots in a twice-delayed Senate election that has been criticized for its potential to spread the deadly Ebola disease.

Evidence-based recs issued for systemic care in psoriasis

Dec 19, 2014

(HealthDay)—For appropriately selected patients with psoriasis, combining biologics with other systemic treatments, including phototherapy, oral medications, or other biologic, may result in greater efficacy ...

Bacteria in caramel apples kills at least four in US

Dec 19, 2014

A listeria outbreak believed to originate from commercially packaged caramel apples has killed at least four people in the United States and sickened 28 people since November, officials said Friday.

Steroid-based treatment may answer needs of pediatric EoE patients

Dec 19, 2014

A new formulation of oral budesonide suspension, a steroid-based treatment, is safe and effective in treating pediatric patients with eosinophilic esophagitis (EoE), according to a new study in Clinical Gastroenterology and Hepatology, the official clinical practice journal ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.