Man in the Moon has 'Graphite Whiskers'

Jul 01, 2010
The Moon. Credit: NASA

Up to now scientists thought that the trace amounts of carbon on the surface of the Moon came from the solar wind. Now researchers at the Carnegie Institution's Geophysical Laboratory have detected and dated Moon carbon in the form of graphite -- the sooty stuff of pencil lead -- which survived from the late heavy bombardment era 3.8 billion years ago.

The researchers found instances of and a form of rolled graphite called graphite whiskers that could only form in very high temperature reactions initiated by an impact. The discovery also means that the Moon potentially holds a record of the meteoritic carbon input to the Earth-Moon system, when life was just beginning to emerge on Earth. The research is published in the July 2, 2010, issue of Science.

"The Solar System was chaotic with countless colliding objects 3.8 billion years ago," explained lead author Andrew Steele. "Volatiles—compounds like water and elements like carbon were vaporized under that heat and shock. These materials were critical to the creation of life on Earth. Our team analyzed Moon rocks collected from the Mare Serenitatis visited by the Apollo 17 mission.

In the past, researchers tried to extract the carbon from Moon material, but the only carbon definitively identified came from the solar wind. We used a different technique. We looked at thin rock slices and fresh surfaces using a called confocal Raman imaging spectroscopy. This technique identifies minerals and carbon species and their spatial relationship to each other beneath the surface of a sample. We were really surprised at the discovery of graphite and graphite whiskers, we were not expecting to see anything like this."

Raman spectroscopy of a lunar sample collected by Apollo 17 reveals graphite whiskers, shown in yellow. Image credit: Andrew Steele, Carnegie Institution.

The scientists ruled out the possibility that the graphite was a result of contamination, because graphite whiskers, in particular, form under very hot conditions, between 1830° F and 6500° F (1273-3900 Kelvin). They also ruled out that the solar wind was the source, because the particles of graphite and graphite whiskers were much larger than the carbon that is implanted by the and, while contamination occurred throughout the sample, the graphite was restricted to a discrete blackened area of the sample.

"We believe that the we detected either came from the object that made the impact basin, or it condensed from the carbon-rich gas that was released during impact, said coauthor Francis McCubbin. "The most exciting prospect from the discovery is that we now know that the holds a record of that period and the materials that contributed to the rise of life on Earth."

"Furthermore, it shows that modern spatially resolved techniques can be used to discover further surprises in the now 40-year-old Apollo collection," remarked Mihaela Glamoclija another coauthor on the study.

Explore further: Cassini: Return to Rhea

More information: "Graphite in an Apollo 17 Impact Melt Breccia," by A. Steele, et. al. Science, July 2, 2010.

Related Stories

A Stellar, Metal-Free Way to Make Carbon Nanotubes

Feb 22, 2010

(PhysOrg.com) -- Space apparently has its own recipe for making carbon nanotubes, one of the most intriguing contributions of nanotechnology here on Earth, and metals are conspicuously missing from the list ...

Meteorite yields carbon crystals harder than diamond

Feb 03, 2010

(PhysOrg.com) -- Two new types of ultra-hard carbon crystals have been found by researchers investigating the ureilite class Haverö meteorite that crashed to Earth in Finland in 1971. Ureilite meteorites ...

Moon whets appetite for water

Jun 14, 2010

Scientists at the Carnegie Institution's Geophysical Laboratory, with colleagues, have discovered a much higher water content in the Moon's interior than previous studies. Their research suggests that the ...

Graphite mimics iron's magnetism

Oct 04, 2009

Researchers of Eindhoven University of Technology and the Radboud University Nijmegen in The Netherlands show for the first time why ordinary graphite is a permanent magnet at room temperature. The results ...

Recommended for you

Cassini: Return to Rhea

2 hours ago

After a couple of years in high-inclination orbits that limited its ability to encounter Saturn's moons, NASA's Cassini spacecraft returned to Saturn's equatorial plane in March 2015.

Comet dust—planet Mercury's 'invisible paint'

9 hours ago

A team of scientists has a new explanation for the planet Mercury's dark, barely reflective surface. In a paper published in Nature Geoscience, the researchers suggest that a steady dusting of carbon from p ...

It's 'full spin ahead' for NASA soil moisture mapper

12 hours ago

The 20-foot (6-meter) "golden lasso" reflector antenna atop NASA's new Soil Moisture Active Passive (SMAP) observatory is now ready to wrangle up high-resolution global soil moisture data, following the successful ...

What drives the solar cycle?

12 hours ago

You can be thankful that we bask in the glow of a relatively placid star. Currently about halfway along its 10 billion year career on the Main Sequence, our sun fuses hydrogen into helium in a battle against ...

MESSENGER completes 4,000th orbit of Mercury

13 hours ago

On March 25, the MESSENGER spacecraft completed its 4,000th orbit of Mercury, and the lowest point in its orbit continues to move closer to the planet than ever before. The orbital phase of the MESSENGER ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.