Rocky mounds and a plateau on Mars

Jun 28, 2010
The region around Magellan Crater stretches across 190 x 112 km, and covers an area of about 21 280 sq km, which is roughly the size of Slovenia. It is to the southwest of the volcanic region Tharsis on the southern highlands of Mars. With a ground resolution of about 25 m per pixel, the data were acquired for the region of Magellan Crater at about 34°S/185°E, during Mars Express’s orbit 6547 on 6 February 2009. Credits: ESA/DLR/FU Berlin (G. Neukum)

(PhysOrg.com) -- When Mars Express set sail for the crater named after Portuguese navigator Ferdinand Magellan, it found a windblown plateau and mysterious rocky mounds nearby.

Stretching across 190 x 112 km, this region of covers an area of about 21 280 sq km, which is roughly the size of Slovenia. It is located to the southwest of the volcanic region Tharsis on the southern highlands of Mars, near the crater Magellan.

Named after the famous Portuguese navigator and explorer Ferdinand Magellan, the is about 100 km across. Only a small portion of the crater rim is visible in this image, sitting at the lower right, because the (HRSC) has zeroed in on some intriguing features nearby.

Looking towards Magellan Crater across the smooth plateau and the rock mounds of the region. Credits: ESA/DLR/FU Berlin (G. Neukum)

In the west of this region (at the upper edge of the main image) there are light-coloured, irregular protrusions. These features are up to 2 km tall and are probably large rock fragments or mounds of rock. However, their formation is still debated.

One possibility is that the top layer of rock was shattered by the shockwaves from an impact. Another possible explanation would be from a process called subrosion. On Mars, subrosion is widely observed when rising magma heats frozen ground water, which melts and removes subsurface material as it flows away. This leads to a honeycomb of cavities that eventually collapse due to the weight of the overlying rock layers, leaving the irregular mounds standing.

The northern part of the region (to the right of the main image) displays linear features with a preferential northwest-southeast orientation. These eventually lead to deep, well-defined valleys and are likely to be faults, formed during either an impact event or the upsurge of the Tharsis region that created enormous stresses in the planet’s crust. Examining the geometry of fault zones offers clues to the level and the direction of the stress exerted on the rock.

This image of Magellan Crater stretches across 190 x 112 km, and covers an area of about 21 280 sq km, which is roughly the size of Slovenia. It is to the southwest of the volcanic region Tharsis on the southern highlands of Mars. This image was created using a Digital Terrain Model (DTM) obtained from the High Resolution Stereo Camera on ESA’s Mars Express spacecraft. Elevation data from the DTM is colour-coded: blue indicates the lowest-lying regions, and beige the higher elevations. The scale is in metres. Credits: ESA/DLR/FU Berlin (G. Neukum)

A rather smooth, barely fractured plateau is located almost in the centre of the main image. It is possible the plateau is made up of the same material as the highly fractured mounds in the west. Fine trails run from southwest to northeast across here. These could be an indication of erosion by fine dust particles carried on the wind, sandblasting the plateau smooth.

With a ground resolution of about 25 m per pixel, the data were acquired for the region of Magellan Crater at about 34°S/185°E, during Mars Express’s orbit 6547 on 6 February 2009.

Explore further: Is space tourism safe or do civilians risk health effects?

Related Stories

Volcanic ash in Meridiani Planum

May 12, 2010

Deposits of volcanic ash colour this view of the Meridiani Planum, as seen by the Mars Express High Resolution Stereo Camera. They also give clues to the prevailing wind direction in this region of Mars.

Fractured crater near Valles Marineris on Mars

Jul 28, 2004

This perspective image of a fractured crater near Valles Marineris on Mars was obtained by the High Resolution Stereo Camera (HRSC) on board the ESA Mars Express spacecraft. ...

Impact Craters in Tyrrhena Terra

Jul 31, 2007

The High Resolution Stereo Camera (HRSC) on board ESA’s Mars Express obtained images of the Tyrrhena Terra region on Mars.

Mars Photos: 3D Image of Solis Planum

Sep 12, 2004

These images, taken by the High Resolution Stereo Camera (HRSC) on board ESA’s Mars Express spacecraft, show part of a heavily eroded impact crater at Solis Planum, in the Thaumasia region of Mars. The images wer ...

Recommended for you

Cassini sees sunny seas on Titan

9 hours ago

(Phys.org) —As it soared past Saturn's large moon Titan recently, NASA's Cassini spacecraft caught a glimpse of bright sunlight reflecting off hydrocarbon seas.

Is space tourism safe or do civilians risk health effects?

12 hours ago

Several companies are developing spacecraft designed to take ordinary citizens, not astronauts, on short trips into space. "Space tourism" and short periods of weightlessness appear to be safe for most individuals ...

An unmanned rocket exploded. So what?

15 hours ago

Sputnik was launched more than 50 years ago. Since then we have seen missions launched to Mercury, Mars and to all the planets within the solar system. We have sent a dozen men to the moon and many more to ...

NASA image: Sunrise from the International Space Station

16 hours ago

NASA astronaut Reid Wiseman posted this image of a sunrise, captured from the International Space Station, to social media on Oct. 29, 2014. Wiseman wrote, "Not every day is easy. Yesterday was a tough one. ...

Copernicus operations secured until 2021

16 hours ago

In a landmark agreement for Europe's Copernicus programme, the European Commission and ESA have signed an Agreement of over €3 billion to manage and implement the Copernicus 'space component' between 2014 ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.