Plastics used to fix teeth could help prevent spread of disease

Jun 23, 2010

(PhysOrg.com) -- Researchers at Cranfield University have designed tiny particles that stop bacteria from communicating with each other in a bid to prevent spread of infection and disease.

Using similar plastics that dentists use to correct misaligned teeth, the Cranfield Health team has developed polymers that absorb the bacteria’s signal to attack so they are fooled into ‘thinking’ their numbers are low and don’t switch to a more dangerous state. By removing the signal molecules the bacteria isn’t killed but instead it makes it much more difficult for them to develop a resistance to drugs and therapies.

The ability to disrupt bacterial communication, therefore preventing the bacteria from releasing toxins or forming sticky, drug-resistant layers (biofilms), is an important target for new medical treatments. It is generally accepted that biofilms are responsible for 70% of all human infections so new preventative measures are urgently needed.

Based on a type of ‘smart’ plastic, unlike expensive antibodies, which can be made to do the same job, these polymers can be synthesised in bulk using cheap raw materials. It is possible to foresee that these polymers when prepared in powder format could be easily integrated into traditional materials or, when the are packed into capsules, they could be delivered directly to the gut in order to treat bacterial infections.

Dr Elena Piletska, who has pioneered this work, said: “The polymers which we described are not expensive and could be prepared in large quantities. It is difficult to say when these materials will be commercialised and in general use. I hope that one day they will be a part of common practice for the treatment of gut and wound infections, or become an important ingredient for mouthwash or even in oral care. We have already obtained a ‘proof of concept’ for this technology but further development would require the investment and support to fulfil this potential highly innovative technology. The interest and commitment of the pharmaceutical industry could make all the difference.”

Explore further: A refined approach to proteins at low resolution

Provided by Cranfield University

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

'Alien'-type viruses to treat MRSA

Apr 01, 2008

New methods that involve sticking thousands of bacteria-killing viruses to wound dressings are offering ways to prevent hospital operating theatres from spreading infections, scientists heard today at the Society for General ...

Gallium: A new antibacterial agent?

Mar 16, 2007

New antibacterial strategies are needed because more and more bacteria are antibiotic resistant and because antibiotics are not effective at eradicating chronic bacterial infections. One approach to developing new antibacterial ...

Resistant gut bacteria will not go away by themselves

Jun 19, 2007

E. coli bacteria that have developed resistance to antibiotics will probably still be around even if we stop using antibiotics, as these strains have the same good chance as other bacteria of continuing to colonise the gut, ...

Recommended for you

A refined approach to proteins at low resolution

Sep 19, 2014

Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because ...

Base-pairing protects DNA from UV damage

Sep 19, 2014

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0