New medical weapons to protect against anthrax attacks

Jun 23, 2010
A new generation of vaccines, antibiotics, and other medicines could protect people against future terrorist attacks with anthrax spores (above). Credit: Centers for Disease Control and Prevention

The 2001 anthrax attacks in the United States are fostering development of a new generation of vaccines, antibiotics, and other medications to protect people against the potentially deadly bacteria in any future bioterrorist incident. That's the conclusion of a sweeping overview of scientific research on medical technology to combat the anthrax threat. It appears in ACS' bi-weekly Journal of Medicinal Chemistry.

In the article, Dimitrios Bouzianas notes that several existing are available to combat an anthrax infection. However, the emergence of artificially engineered B. anthracis strains, resistant to multiple antibiotics (including the front-line agents , , and β-lactam antibiotics) has prompted researchers to pursue additional therapeutic options. Such alternatives include small molecules and antibodies against toxins that the lethal bacteria secrete.

Passive immunization using a polyclonal or a high-affinity monoclonal antibody may offer adjunctive value to antibiotic therapy. Today's drug arsenal has another weakness: no medications available to fight the dangerous toxin that can circulate in a person's blood when antibiotic treatment begins after the disease has taken hold. Therefore, there is an urgent need for the discovery of antitoxin agents that would be effective at the end stage of anthrax.

Bouzianas describes promising new treatments now in various stages of development. They include a new genre of anthrax vaccines that would be more effective and yet require fewer doses than current vaccines. Among them: A long-sought inhalable vaccine that people might self-administer without a needle. Importantly, this powered vaccine would not require refrigeration and would have a long shelf life — ideal for the strategic drug stockpiles kept on hand for rapid distribution in case of national emergencies. Also on the horizon: New antibiotics that are less likely to encounter resistance and medicines that can block the effects of anthrax toxin. Because anthrax is rare as a natural disease in humans, the development of new treatment modalities is seriously hampered by the difficulty in demonstrating their effectiveness in humans.

Explore further: Structure of sodium channels different than previously believed

More information: "Current and Future Medical Approaches To Combat the Anthrax Threat", Journal of Medicinal Chemistry.

add to favorites email to friend print save as pdf

Related Stories

A faster, more sensitive method for detecting anthrax

Nov 05, 2007

Amid continuing concerns that anthrax might be used as a bioterrorism weapon, government researchers report development of a faster, more sensitive blood test for detecting the deadly toxins produced by the ...

Anthrax cellular entry point uncovered

Jan 25, 2008

The long-sought-after biological “gateway” that anthrax uses to enter healthy cells has been uncovered by microbiologists at the University of Alabama at Birmingham (UAB).

Scientists move closer to a safer anthrax vaccine

Sep 04, 2009

Researchers at Albert Einstein College of Medicine of Yeshiva University have identified two small protein fragments that could be developed into an anthrax vaccine that may cause fewer side effects than ...

Recommended for you

Breakthrough points to new drugs from nature

Apr 16, 2014

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

Apr 16, 2014

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 0

More news stories

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...