'BC5' material shows superhard, superconducting potential

Jun 22, 2010

What could be better than diamond when it comes to a superhard material for electronics under extreme thermal and pressure conditions? Quite possibly BC5, a diamond-like material with an extremely high boron content that offers exceptional hardness and resistance to fracture, but unlike diamond, it is a superconductor rather than an insulator. A research team in China studying BC5 describes its potential in the Journal of Applied Physics.

"Our current study reveals a great possibility that BC5 may possess both superhard and superconducting properties that are beneficial to the creation of multifunctional devices under extreme conditions," says Professor Yanming Ma, who led the research team at Jilin University.

At the heart of their study is the proposal that the synthesized BC5 adopts the diamond-[100] structure with special symmetry. Explains Ma, the BC5 structure has atomic packing of the form ABCABC… along the [100] crystallographic direction of diamond. This makes the deep understanding of this superhard and superconducting species possible. Ma believes that the outstanding mechanical and of BC5 can be adapted to design new superconducting nano-electromechanical systems and high-pressure devices.

Quan Li, the study's first author, expects their findings to stimulate further research into other B-C-N compounds with superhard and superconducting properties.

Explore further: Evidence mounts for quantum criticality theory

More information: The article, "Superhard and Superconducting Structures of BC5" by Quan Li et al will appear in the Journal of Applied Physics. See: jap.aip.org/

Provided by American Institute of Physics

4.6 /5 (5 votes)
add to favorites email to friend print save as pdf

Related Stories

Superconductivity in diamond

Apr 10, 2004

As well as holding pride of place as the most sought-after of all precious gemstones, diamond possesses a dazzling array of technologically useful properties. As well as being the hardest, most thermally conducting, ...

Scientists Discover Material Harder Than Diamond

Feb 12, 2009

(PhysOrg.com) -- Currently, diamond is regarded to be the hardest known material in the world. But by considering large compressive pressures under indenters, scientists have calculated that a material called ...

Metal Becomes Transparent Under High Pressure

Mar 12, 2009

An international team of scientists have discovered a transparent form of the element sodium (Na). The team, led by Artem Oganov, Professor of Theoretical Crystallography at Stony Brook University, and Yanming ...

Researchers to Study Properties of the Hope Diamond

Aug 25, 2005

Since January, scientists from the Naval Research Laboratory's Chemistry Division have been studying the optical properties of the Hope Diamond, at the invitation of the Smithsonian Institution. In collaboration with the ...

Recommended for you

Galaxy dust findings confound view of early Universe

22 hours ago

What was the Universe like at the beginning of time? How did the Universe come to be the way it is today?—big questions and huge attention paid when scientists attempt answers. So was the early-universe ...

Evidence mounts for quantum criticality theory

Jan 30, 2015

A new study by a team of physicists at Rice University, Zhejiang University, Los Alamos National Laboratory, Florida State University and the Max Planck Institute adds to the growing body of evidence supporting ...

Scaling up armor systems

Jan 30, 2015

Dermal modification is a significant part of evolution, says Ranajay Ghosh, an associate research scientist in the College of Engineering. Almost every organism has something on its skin that provides important ...

Seeking cracks in the Standard Model

Jan 30, 2015

In particle physics, it's our business to understand structure. I work on the Large Hadron Collider (LHC) and this machine lets us see and study the smallest structure of all; unimaginably tiny fundamental partic ...

The first optically synchronised free-electron laser

Jan 30, 2015

Scientists at DESY have developed and implemented an optical synchronisation system for the soft X-ray free-electron laser FLASH, achieving facility-wide synchronisation with femtosecond precision. The performance ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.