Alternative pathway to malaria infection identified

Jun 17, 2010

Discovery of a key red cell molecule used by the malaria parasite gives renewed hope for an effective vaccine in the future, according to an international team of researchers.

Plasmodium falciparum, a blood parasite that causes by invading and multiplying in the red blood cells, kills 1 to 2 million people annually.

"How the parasite invades is not completely understood," said Jose A. Stoute, M.D., senior investigator and team leader, Department of Medicine, Division of and Epidemiology, Penn State College of Medicine. "For many years it has been known that proteins called glycophorins are used by the parasite to gain entry into the red cell."

Because infection can take place without glycophorins, researchers suspected that another is also involved. The identity of this protein remained a mystery for 20 years and it was named the "X" receptor. A team of researchers now reports in today's (June 17) issue of PLoS Pathogens, the identity of this protein as the complement receptor 1 (CR1), also known to help protect red cells from attack by the immune system. CR1 has been suspected of having other roles in the development of malaria complications. The team was able to demonstrate that this protein is important in the invasion of red cells by using several laboratory strains of malaria as well as strains obtained from Kenya.

"Our findings suggest that for many malaria strains, CR1 is an alternative receptor to glycophorins on intact red cells," Stoute said.

According to the researchers, the reasons malaria may use the CR1 protein instead of glycophorins are if the parasite encounters a variant that lacks the glycophorin receptor; if the immune system mounts a response against parasite proteins involved in the dominant pathway due to a previous infection; or if the host were to be vaccinated with a vaccine that blocks the glycophorin pathway.

"This work has important implications for the future development of a vaccine against malaria," Stoute said. "Therefore, it is imperative that all the major invasion pathways be represented in a future malaria blood stage vaccine."

Vaccines that target parasite proteins involved in the dominant glycophorin pathway, but do not block the CR1 pathway, may cause proliferation of parasites that rely on the CR1 pathway for infection.

"The demonstration that CR1 is a receptor of P. falciparum will facilitate the identification of additional parasite proteins that allow it to bind to the blood cell, and the future development of a vaccine that effectively blocks red cell invasion," said Carmenza Spadafora, lead author and scientist at the Institute for Advanced Science and High Technology Studies, Republic of Panama.

Explore further: Growing a blood vessel in a week

add to favorites email to friend print save as pdf

Related Stories

How adhesive protein causes malaria

Sep 25, 2007

Researchers at the Swedish medical university Karolinska Institutet (KI) and the Swedish Institute for Infectious Disease Control (SMI) have identified the biochemical mechanism behind the adhesive protein that give rise ...

Blood-thinning copycat enters malaria fight

Jun 01, 2010

New treatments for malaria are possible after Walter and Eliza Hall Institute scientists found that molecules similar to the blood-thinning drug heparin can stop malaria from infecting red blood cells.

How the malaria parasite hijacks human red blood cells

Jul 08, 2008

A new study—done on a scale an order of magnitude greater than anything previously attempted in the field of malaria—has uncovered an arsenal of proteins produced by the malaria parasite that allows it to hijack and remodel ...

Recommended for you

Growing a blood vessel in a week

14 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

17 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0