Sequencing a single genome yields cause of inherited bone disorder

Jun 17, 2010

Combining new, whole-genome sequencing technology with classic genetic approaches to understanding inherited diseases, Duke University Medical Center geneticists and colleagues at Johns Hopkins have discovered two gene mutations that cause metachondromatosis, a rare, heritable disorder that leads to bony growths, typically on hands and feet.

They did it by sequencing the entire genome of just one individual.

Traditionally, rare inherited diseases (sometimes called "Mendelian" diseases, referring to those caused by mutations in a single gene and passed on through classic genetic patterns) have been studied using an approach called "linkage" in which a small number of markers are assessed for co-inheritance with the disease. The approach has been successful in many cases, but it can be very time-consuming and has been unsuccessful in as many as 1,500 studies where the presence of a gene inherited in Mendelian fashion is suspected, but has not been found, according to David Goldstein, PhD, director of the Center for Human Genome Variation at Duke.

Goldstein says a new strategy his team used to find mutations that cause metachondromatosis enables faster identification of Mendelian genes. "But perhaps more important, it may allow us to identify a lot of Mendelian genes that have been difficult to pin down with traditional analyses."

The opportunity to study genetic causes of metachondromatosis arose when Goldstein was lecturing at Johns Hopkins. Nara Sobreira, a graduate student in human genetics at Hopkins and a lead author of the study, mentioned to Goldstein that she was studying a small family that included six individuals across four generations affected with metachondromatosis.

The research team chose one member of the family and sequenced the entire genome of that person. Next, they used data from partial linkage data from other family members to identify areas in the genome where potentially causative mutations were most likely to be found. The analysis turned up six probable regions, implicating about one percent of the total genome. "This amount of genetic material would be very challenging to sequence using traditional strategies," said Goldstein.

The team used whole to zero in on a tiny string of 11 base pairs deleted from exon four of a gene called PTPN11. They found that all members of the family affected with metachondromatosis carried this mutation. The researchers confirmed PTPN11 alteration as the cause of the disease when they found a different mutation in the same gene in a second family with a history of the disease that also appeared in all of those affected with the disorder. Both mutations were predicted to lead to loss of function, or the inability of the body to make a protein necessary for normal development.

The researchers also sequenced exon 4 of PTPN11 - the location of the causal mutations - in 469 unrelated controls but did not find any mutations in the gene in that group.

Elizabeth Cirulli, a graduate student at Duke, a lead author and a member of Goldstein's team, says this is the first time that nonsense mutations in PTPN11 - errors that disable a protein -- have been described in human disease. "The next step would be to figure out how this mutation directly contributes to the development of metachondromatosis," she said.

Sobreira said that finding the gene that causes metachondromatosis may also reveal the of other diseases, like Maffucci syndrome and Ollier's disease, since individuals with those disorders share similar physical characteristics with those who have metachondromatosis.

Goldstein says the study adds to a small but growing list of examples where whole-genome sequencing approaches have successfully identified rare, high-penetrant risk factors for disease. Penetrance is a measure of how potent a mutation is in causing disease.

"The fact that linkage evidence was able to narrow our search for variants to just a fraction of what it might otherwise have been, cut our research time considerably," Goldstein says. He says that one interesting feature of this study is that the initial linkage evidence was only modest, approaching the sort of linkage evidence sometimes seen in large, multiple families for common diseases. "We are therefore hopeful that this sort of family-based sequencing might have utility in the study of genetic variants involved in more common diseases."

Explore further: Down's chromosome cause genome-wide disruption

More information: Sobreira NLM, Cirulli ET, Avramopoulos D, Wohler E, Oswald GL, et al. (2010) Whole-Genome Sequencing of a Single Proband Together with Linkage Analysis Identifies a Mendelian Disease Gene. PLoS Genet 6(6): e1000991. doi:10.1371/journal.pgen.1000991

Related Stories

Refined tools help pinpoint disease-causing genes

Apr 29, 2010

In findings that may speed the search for disease-causing genes, a new study challenges the prevailing view that common diseases are usually caused by common gene variants (mutations). Instead, say genetics researchers, the ...

Recommended for you

Refining the language for chromosomes

16 hours ago

When talking about genetic abnormalities at the DNA level that occur when chromosomes swap, delete or add parts, there is an evolving communication gap both in the science and medical worlds, leading to inconsistencies in ...

Down's chromosome cause genome-wide disruption

Apr 16, 2014

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

User comments : 0

More news stories

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

Venture investments jump to $9.5B in 1Q

Funding for U.S. startup companies soared 57 percent in the first quarter to a level not seen since 2001, as venture capitalists piled more money into an increasing number of deals, according to a report due out Friday.

White House updating online privacy policy

A new Obama administration privacy policy out Friday explains how the government will gather the user data of online visitors to, mobile apps and social media sites. It also clarifies that ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.