Battle of the bugs leaves humans as collateral damage

Jun 17, 2010
Streptococcus meets Saving Private Ryan. Image: Craig Brierley

It's a tragedy of war that innocent bystanders often get caught in the crossfire. But now scientists at the University of Pennsylvania and the University of Oxford have shown how a battle for survival at a microscopic level could leave humans as the unlikely victims.

In work funded by the US Public Health Service and the Wellcome Trust, the researchers have found a possible explanation for why some bacteria turn nasty, even at great risk to their own survival.

The body is home to a wide range of bacteria which in the vast majority of cases exist quietly, causing no harm. Sometimes, a bacterium will evolve properties which are potentially deadly to its human host. But evolution comes at a cost and this presents a paradox: why should it harm its host when this could result in the demise of the bacteria themselves?

"For many microbes, living in harmony with their host is the best option, so why do some suddenly turn nasty?" asks Dr Sam Brown, a Wellcome Trust Research Career Development Fellow at the University of Oxford. "Sometimes the answer is obvious - for example, the makes its host sneeze, helping it spread wider. But for other bacteria and viruses, which do not normally cause disease, the reason isn't at all clear."

In a study published today in , scientists have modelled in mice how a commonly-found bacterium known as interacts with other bacteria, showing that competition for space between rival bacteria can cause deadlier forms of bacteria to evolve. S. pneumoniae usually exists in the nasal passage, where it sits quietly: as many as two in five people in some countries will carry the bug without being aware of it.

When S. pneumoniae is forced to share space with , another common and ordinarily asymptomatic bacterium, the two begin a tussle for space. But H. influenzae has an extra trick up its sleeve, calling on our immune system to help get rid of its competitor by recruiting white blood cells called neutrophils, which surround and attack the S. pneumoniae bacteria.

"Many bacteria are not a problem to our immune system, so can be left alone," explains Dr. Lysenko. "But the H. influenzae bacteria stir up trouble, saying to the body, 'S. pneumoniae are bad guys - beat them up'. The neutrophils respond, attacking the innocent bacteria and thus helping H. influenzae to survive."

Many strains of S. pneumoniae exist, each coated with a thick sugar capsule. In some strains, the capsule is particularly protective, and appears to act as armour against the host's immune response. This allows the bacterium to enter the blood stream where it can go on to replicate and cause serious diseases such as pneumonia, bacteraemia (blood infection), septicaemia and meningitis.

The researchers tested different combinations of three - two pneumococcal strains (armoured and un-armoured), and H. influenzae. They found that when a sufficient amount of H. influenzae was present, the more virulent, armoured strain of S. pneumoniae began to out-compete its rivals: its thick sugar coating was allowing it to escape attack from the neutrophils, but this property also made it more deadly when it entered the blood stream.

Dr Brown concludes: "Creating a new armour is costly to S. pneumoniae in terms of the energy expended to make it, but it means the bacterium wins the battle with H. influenzae. However, it also means that if S. pneumoniae enters the blood stream, the is unable to stop its rampant progress. Our bodies are unable to cope and the armoured bug could pay the ultimate price: death to its host and death to itself."

According to Dr Jeff Weiser from the University of Pennsylvania School of Medicine, Philadelphia, the results could have implications for the development of new treatments and vaccines against infection.

"Our study demonstrates the complex interactions among the many microbial species that live in our bodies," he says. "Usage of antibiotics and vaccines is increasingly influencing these relationships, potentially tipping the outcome of the battle between competing microbes. Our ongoing war on infectious diseases should consider the effects of microbes on one another."

Explore further: How plant cell compartments change with cell growth

More information: Paper: www.cell.com/current-biology/a… -9822%2810%2900654-8

Related Stories

New vaccines may not reduce TB incidence

Oct 07, 2008

(PhysOrg.com) -- Despite the potential of new vaccines to prevent TB, new research shows that the removal of one strain of TB can allow a previously suppressed strain to succeed. Consequently, a vaccination ...

UVic Biochemist Stares Down Superbug

Dec 03, 2007

University of Victoria biochemist Dr. Alisdair Boraston has discovered something new about a nasty superbug—a discovery that could lead to new drugs to combat it.

Recommended for you

How plant cell compartments change with cell growth

18 hours ago

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

18 hours ago

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

19 hours ago

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

20 hours ago

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0