Geometry affects drift and diffusion across entropic barriers

Jun 16, 2010

An understanding of particle diffusion in the presence of constrictions is essential in fields as diverse as drug delivery, cellular biology, nanotechnology, materials engineering, and spread of pollutants in the soil. When a driving force is applied, displacement of particles occurs as well as diffusion.

A paper in the Journal of Chemical Physics quantifies the effects of periodic constrictions on and diffusion in systems experiencing a driving force.

In a uniform cylinder, both the mobility and the diffusion coefficient of the particle are independent of the driving force. This is not true, however, when the cylinder diameter varies. Constrictions provide periodic entropic barriers, which slow down drift and diffusion when the driving force is weak. This research examined two types of cylinders.

In the first, a tube consisted of sequential spherical compartments connected by small circular openings. The driving force suppressed the slowdown due to the constrictions. The particle subjected to a strong driving force showed no change in effective diffusion coefficient or mobility as a result of the periodic restrictions. In a tube of cylindrical chambers, however, the results were dramatically different. Under a strong driving force, mobility decreased while the diffusion coefficient became extremely large due to intermittency that occurred in the particle transitions between openings connecting neighboring compartments.

While author Alexander Berezhkovskii of the National Institutes of Health acknowledges that the original idea for the project was inspired by devices that deliver drugs locally in small amounts, he looks at the research as a quest for a broader understanding. "Nature is very complicated because of , but we are looking for something simple that underlies the complexity," he says.

Explore further: How the hummingbird achieves its aerobatic feats

More information: The article, "Drift and diffusion in a tube of periodically varying diameter. Driving force induced intermittency" by Alexander Berezhkovskii et al will appear in the Journal of Chemical Physics. jcp.aip.org/

Provided by American Institute of Physics

4 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Diffusion of a soluble protein through a sensory cilium

Feb 22, 2010

A team of researchers led by Peter Calvert (SUNY Upstate Medical University) has, for the first time, measured the diffusion coefficient of a protein in a primary cilium and in other major compartments of ...

Where does the fluid go?

Feb 24, 2010

Combined mechanisms of transport have important applications -- transport of nutrients across cell membranes in plants and animals, the aeration of agricultural soils, performance of chemical reactors, the design of membranes ...

MRI predicts liver fibrosis, study says

Oct 23, 2007

Moderate to severe chronic liver disease can be predicted with the use of diffusion-weighted MRI (DWI), according to a recent study conducted by researchers at New York University Medical Center in New York, NY.

US executive branch drives foreign policy

Nov 06, 2008

A new study in the journal International Studies Perspectives examines U.S. foreign policy towards three Middle Eastern states and finds that the executive branch is often the driving force in foreign policy. Also, U.S. f ...

Recommended for you

How the hummingbird achieves its aerobatic feats

12 hours ago

(Phys.org) —The sight of a tiny hummingbird hovering in front of a flower and then darting to another with lightning speed amazes and delights. But it also leaves watchers with a persistent question: How ...

New terahertz device could strengthen security

Nov 21, 2014

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

CERN makes public first data of LHC experiments

Nov 21, 2014

CERN today launched its Open Data Portal where data from real collision events, produced by experiments at the Large Hadron Collider (LHC) will for the first time be made openly available to all. It is expected ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.