Understanding robustness in organisms -- a potential weapon against infectious diseases

Jun 16, 2010

"Robust" is an adjective appreciatively applied to certain vintage wines, but when describing viruses and pathogens, robustness is a property that may be much less desirable. It evokes drug resistant microbes and other superbugs that can wreak havoc as researchers struggle to deal with new pandemics. How can we undercut this robustness?

A study in the journal , which is published by the American Institute of Physics, examines the ability of organisms to survive and sustain themselves in the face of various kinds of change. C. Brandon Ogbunugafor and his team at Yale University looked at new and existing data to determine the strengths and weaknesses of the study of robustness as a formal concept and its application in infectious systems.

They found that while one must be careful in defining and applying the premise of robustness, the infectious disease paradigm was full of examples where further application might be useful. While preliminary, Dr. Ogbunugafor's work could have far-reaching implications in a world with increasing numbers of drug-resistant strains of disease.

"We believe that further application of the robustness concept, with experiments designed to test it in other systems, might aid in how we study and treat of various kinds," Ogbunugafor says. "This is quite exciting, as it uncovers fertile ground for the application of an exciting concept in the context of infectious diseases that is highly relevant to everyday life."

While there are still a number of unanswered questions, researchers are hopeful that the application of this concept could help predict how organisms evolve. Ultimately, Ogbunugafor predicts that the application of the robustness concept could serve as a "Rosetta Stone" for predictive evolution, which might constitute the next paradigm shift in . "Perhaps by understanding how robustness manifests in diseases like influenza and malaria, for example, we'll be better able to predict drug resistant variants before they arise and stay a step ahead of the enemy in the ubiquitous arms race between us and the microbes that threaten our well-being," he says.

Explore further: New approach to form non-equilibrium structures

More information: The article, "On the Possible Role of Robustness in the Evolution of Infectious Diseases" by C. Brandon Ogbunugafor et al will appear in Chaos: An Interdisciplinary Journal of Nonlinear Science. Chaos.aip.org/

Provided by American Institute of Physics

4 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Paradigm shift needed to combat drug resistance

Oct 15, 2009

When people travel, bacteria and other infectious agents travel with them. As about a billion people cross international borders each year, many more billions of the bugs come along for the ride.

New evidence on the robustness of metabolic networks

Sep 04, 2008

Biological systems are constantly evolving in ways that increase their fitness for survival amidst environmental fluctuations and internal errors. Now, in a study of cell metabolism, a Northwestern University research team ...

Recommended for you

New approach to form non-equilibrium structures

8 hours ago

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

10 hours ago

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

Chemist develops X-ray vision for quality assurance

14 hours ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

14 hours ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

IHEP in China has ambitions for Higgs factory

Jul 23, 2014

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

User comments : 0