Plastic antibody works in first tests in living animals

Jun 09, 2010

Scientists are reporting the first evidence that a plastic antibody -- an artificial version of the proteins produced by the body's immune system to recognize and fight infections and foreign substances -- works in the bloodstream of a living animal. The discovery, they suggest in a report in the Journal of the American Chemical Society, is an advance toward medical use of simple plastic particles custom tailored to fight an array of troublesome "antigens." Those antigens include everything from disease-causing viruses and bacteria to the troublesome proteins that cause allergic reactions to plant pollen, house dust, certain foods, poison ivy, bee stings and other substances.

In the report, Kenneth Shea, Yu Hosino, and colleagues refer to previous research in which they developed a method for making nanoparticles, barely 1/50,000th the width of a human hair, that mimic natural antibodies in their ability to latch onto an antigen. That antigen was melittin, the main toxin in bee venom.

They make the antibody with molecular imprinting, a process similar to leaving a footprint in wet concrete.

The scientists mixed melittin with small molecules called monomers, and then started a chemical reaction that links those building blocks into long chains, and makes them solidify. When the plastic dots hardened, the researchers leached the poison out. That left the nanoparticles with tiny toxin-shaped craters.

Their new research, together with Naoto Oku's group of the University Shizuoka Japan, established that the plastic melittin antibodies worked like natural antibodies.

The scientists gave lab mice lethal injections of melittin, which breaks open and kills cells. Animals that then immediately received an injection of the melittin-targeting plastic antibody showed a significantly higher survival rate than those that did not receive the nanoparticles. Such nanoparticles could be fabricated for a variety of targets, Shea says.

"This opens the door to serious consideration for these nanoparticles in all applications where antibodies are used," he adds.

Explore further: Radiochemistry Annex: It's getting hot in there

More information: "Recognition, Neutralization, and Clearance of Target Peptides in the Bloodstream of Living Mice by Molecularly Imprinted Polymer Nanoparticles: A Plastic Antibody", Journal of the American Chemical Society.

Related Stories

Tumors feel the deadly sting of nanobees

Aug 10, 2009

(PhysOrg.com) -- When bees sting, they pump poison into their victims. Now the toxin in bee venom has been harnessed to kill tumor cells by researchers at Washington University School of Medicine in St. Louis. The researchers ...

Tumors Feel the Deadly Sting of Nanobees

Aug 28, 2009

When bees sting, they pump into their victims a peptide toxin called melittin that destroys cell membranes. Now, by encapsulating this extremely potent molecule within a nanoparticle, researchers at the Washington University ...

Gold nanoparticles enrich every day products

May 05, 2010

(PhysOrg.com) -- Durable paint, water purification, faster computers, tougher shoe soles, and lighter and cheaper televisions are all possibilities now that a Queensland University of Technology (QUT) scientist has discovered ...

Chemical probes beat antibodies at own game

Apr 26, 2007

A new way of detecting biological structures could help in the fight against disease. The new method, developed by scientists at Oxford University, uses chemistry to assemble proteins into ‘protein probes’ ...

Recommended for you

Radiochemistry Annex: It's getting hot in there

2 hours ago

Scientist Daniel Kaplan has found it challenging to study radionuclides in contaminated wetlands due to the radioactive hazard and the biogeochemical complexity of the subsurface soils. Fortunately, he's ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.