Study finds epigenetic similarities between Wilms tumor cells and normal kidney stem cells

Jun 03, 2010

factors controlling when and in what tissues genes are expressed - of Wilms tumor reveals striking similarities to stem cells normally found in fetal kidneys. These findings by Massachusetts General Hospital (MGH) Cancer Center researchers have revealed new cellular pathways that are critical for Wilms tumor development and may also apply to other pediatric cancers. The report appears in the June 4 Cell Stem Cell.

Genetic mutations - changes to the sequence of DNA molecules - are known to underlie many types of cancer. But the role of epigenetics in is just beginning to be explored. The MGH team has been using advanced sequencing technology to investigate the role of , the structure that makes up chromosomes and consists of DNA wrapped around a protein backbone studded with molecules that can activate or suppress gene expression.

"An organism has only one genome, but it has many epigenomes because different cell types organize their genome into chromatin in ways that allow them to express just the right set of ," explains Bradley Bernstein, MD, PhD, of MGH Pathology and the MGH Cancer Center, senior author of the study. Earlier studies from Bernstein's team used cutting-edge sequencing technologies to identify chromatin structures characteristic of embryonic stem cells. They observed active versions of chromatin structures termed "domains" at genes with critical developmental functions and saw features of both active and repressed chromatin at "bivalent" genes that were not currently expressed but maintained the potential for activation.

For the current study, Bernstein teamed with Miguel Rivera, MD, and Daniel Haber, MD, PhD, of the MGH Cancer Center, along with Aviva Presser Aiden, PhD, of the Broad Institute, to apply those powerful genomic technologies to cancer. The researchers chose to examine the epigenetics of Wilms tumor, a that usually occurs in children, because pediatric are likely to have few genetic alterations, making it easier to identify epigenetic changes.

Whole-genome chromatin screening of Wilms tumors, normal kidney tissues and fetal kidney tissues revealed that the chromatin of Wilms tumors contains the same types of active and bivalent chromatin structures identified in . Among the active genes were many well established regulators of kidney development, as well as a new set of genes that may be critical in tumor development. The presence of bivalent genes shows that normal developmental programs had been interrupted at an early stage in the tumor cells. In essence, Wilms cells give rise to a tumor by indefinitely continuing to behave like renal .

While surgical removal and chemotherapy are successful for the majority of patients with Wilms tumor, current treatment protocols fail in up to 15 percent of patients, notes Rivera, who is co-lead author of the Cell Stem Cell report. "Epigenetic analysis has provided an unprecedented level of detail on the biology of Wilms tumor, allowing us to identify new genes that are likely to be important in this disease and to pinpoint specific defects in developmental pathways. Both of these findings may provide new avenues for therapy," he says. Rivera is an assistant professor of Pathology, and Bernstein an associate professor of Pathology at Harvard Medical School.

Explore further: The origin of the language of life

add to favorites email to friend print save as pdf

Related Stories

Novel molecular 'signature' marks DNA of embryonic stem cells

Apr 20, 2006

A team of scientists announced today a critical step on the path of realizing the promise of embryonic stem (ES) cells for medicine. As described in the April 21 issue of Cell, the researchers have discovered unique molecular ...

Tracking the molecular pathway to mixed-lineage leukemia

Dec 15, 2008

Infants and adults with the blood cancer mixed-lineage leukemia (MLL) typically have a poor prognosis, and most infants die before their first birthdays. Although there are varying causes of MLL, most cases are caused by ...

Recommended for you

The origin of the language of life

Dec 19, 2014

The genetic code is the universal language of life. It describes how information is encoded in the genetic material and is the same for all organisms from simple bacteria to animals to humans. However, the ...

Quest to unravel mysteries of our gene network

Dec 18, 2014

There are roughly 27,000 genes in the human body, all but a relative few of them connected through an intricate and complex network that plays a dominant role in shaping our physiological structure and functions.

EU court clears stem cell patenting

Dec 18, 2014

A human egg used to produce stem cells but unable to develop into a viable embryo can be patented, the European Court of Justice ruled on Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.