Researchers pursue plasmonics and photonics technology for optical improvements

Jun 02, 2010

Professors Mark L. Brongersma of Stanford University and Stefan A. Maier of Imperial College London are investigating new applications for terahertz sensors.

Based on their research, these sensors could be used for improving optical sources, detectors and modulators for optical interconnections and for creating biomolecules, such as plastic explosives for the Air Force.

Brongersma's work is based on the unprecedented ability of nanometallic or plasmonic structures to concentrate light into deep-subwavelength volumes.

"Currently photodetectors, modulators and other chipscale devices are limited in their size by the fundamental laws of diffraction, but with plasmonics, we can make much more compact devices with one to two order of magnitude better performance parameters," said Brongersma. "As the size of these devices determines their operation speed and power, it's hard to make much more efficient devices."

Maier has demonstrated plasmon waveguides on a silicon platform operating in the telecom band, and under AFOSR support he has realized some of the first plasmonic devices operating at THz frequencies.

"The telecom band is important since that's where data communication is taking place by means of optical fibers and the Internet; the silicon platform is significant because most chips are made of that material," said Maier. "THz frequencies are vital for their sensing of dangerous substances, including plastic explosives and anthrax."

The study of plasmonics is bringing these scientists together as each works on fundamentals, information and biotechnology.

"Our team is working on demonstrating plasmon waveguides and cavities for a wide variety of applications spanning the from the visible to the microwave regime," said Maier.

Brongersma's group has worked on the basic concepts behind plasmonics-enabled light concentration and manipulation and is exploring a wide range of applications including faster , nanostructures synthesis, solar cells, water splitting using photoelectrochemistry, quantum optics and sensing.

Dr. Gernot Pomrenke, a program manager for the AFOSR Physics and Electronics directorate has overseen the research of these scientists for many years and Brongersma credits him with being one of the first program managers in the U.S. to realize the potential importance of plasmonics.

For their outstanding AFOSR-funded experimental and theoretical research in nano-plasmonics and nano-photonics, Brongersma and Maier were awarded the 2010 Raymond and Beverly Sackler Prize in the Physical Sciences.

"We are very excited that our fields of research have gained sufficient visibility for us to become the topics of such a prestigious prize, and we are excited and honored to share the prize equally," said Brongersma.

Explore further: New imaging technique shows how cocaine shuts down blood flow in mouse brains

Provided by Air Force Office of Scientific Research

4.7 /5 (6 votes)
add to favorites email to friend print save as pdf

Related Stories

Molecular machines drive plasmonic nanoswitches

Feb 11, 2009

Plasmonics -- a possible replacement for current computing approaches -- may pave the way for the next generation of computers that operate faster and store more information than electronically-based systems and are smaller ...

Photonics: Pump up the bandwidth

Jun 21, 2006

U.S. scientists say they've developed an optical amplifier based on silicon that works across a wide range of frequencies.

Recommended for you

A new, tunable device for spintronics

5 hours ago

Recently, the research group of Professor Jairo Sinova from the Institute of Physics at Johannes Gutenberg University Mainz in collaboration with researchers from the UK, Prague, and Japan, has for the first time realised ...

Watching the structure of glass under pressure

5 hours ago

Glass has many applications that call for different properties, such as resistance to thermal shock or to chemically harsh environments. Glassmakers commonly use additives such as boron oxide to tweak these ...

Inter-dependent networks stress test

8 hours ago

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network—including water for cooling, transport to supply fuel, and ICT systems ...

Explainer: How does our sun shine?

9 hours ago

What makes our sun shine has been a mystery for most of human history. Given our sun is a star and stars are suns, explaining the source of the sun's energy would help us understand why stars shine. ...

User comments : 0