Flow in Earth's mantle moves mountains: study

Jun 02, 2010
This wide angle view of the Earth is centered on the Atlantic Ocean between South America and Africa.

If tectonic plate collisions cause volcanic eruptions, as every fifth grader knows, why do some volcanoes erupt far from a plate boundary?

A study in Nature suggests that volcanoes and mountains in the Mediterranean can grow from the pressure of the semi-liquid mantle pushing on Earth's crust from below.

"The rise and subsidence of different points of the earth is not restricted to the exact locations of the plate boundary. You can get tectonic activity away from a plate boundary," said study co-author Thorsten Becker of the University of Southern California.

The study connects mantle flow to uplift and volcanism in "mobile belts": crustal fragments floating between .

The model should be able to predict uplift and likely hotspots in other mobile belts, such as the North American Cordillera (including the and Sierra Nevada) and the Himalayas.

"We have a tool to be able to answer these questions," Becker said.

Scientists previously had suggested a connection between mantle upwelling and volcanism, Becker said. The Nature study is the first to propose the connection in mobile belts.

Dynamic topography (gray surface) and mantle flow (vectors) as predicted by a geodynamic model for the Mediterranean.

Becker and collaborator Claudio Faccenna of the University of Rome believe that small-scale convection in the mantle is partly responsible for shaping mobile belts.

Mantle that sinks at the plate boundary flows back up farther away, pushing on the crust and causing uplift and crustal motions detectable by , the authors found.

The slow but inexorable motions can move mountains - both gradually and through earthquakes or eruptions.

The study identified two mountain ranges raised almost entirely by mantle flow, according to the authors: the southern Meseta Central plateau in Spain and the Massif Central in France.

Becker and Faccenna inferred mantle flow from interpreting seismic mantle tomography, which provides a picture of the deep earth just like a CAT scan, using seismic waves instead of X-rays.

Assuming that the speed of the waves depends mainly on the temperature of crust and mantle (waves travel slower through warmer matter), the authors used temperature differences to model the direction of mantle convection.

Regions of upward flow, as predicted by the model, mostly coincided with uplift or volcanic activity away from plate boundaries.

"Mantle circulation … appears more important than previously thought, and generates vigorous upwellings even far from the subduction zone," the authors wrote.

Explore further: The creation of the Vuoksi River preceded a significant cultural shift

Related Stories

Earth's mantle flows fast

May 19, 2010

(PhysOrg.com) -- The Earth's mantle flows far more rapidly around a sinking tectonic plate than previously thought, according to new computer modeling by UC Davis geologists. The findings could change the ...

Towards a better understanding of hot spot volcanism

Jan 31, 2008

Most of the Earth’s listed active volcanoes are located at the borders between two tectonic plates, where upsurge of magma from the mantle is facilitated. When these magmatic uprisings occur at a subduction zone, where ...

The Earth's hidden weakness

May 28, 2010

(PhysOrg.com) -- Three thousand kilometres beneath our feet, the Earth's solid rock gives way to the swirling liquid iron of the outer core.

Recommended for you

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Shootist
1 / 5 (3) Jun 02, 2010
You can get tectonic activity away from a plate boundary,


Yeah, you mean like the Laramide Orogeny? Some 70-80My ago? Wyoming, USA is certainly a long way from the Faralon and Kula plate boundaries, but I thought we already knew that?

The largest single volcanic crater is in the Rocky Mountains (Laramide Orogeny).

What is it we didn't know?