Brilliant counterfeit protection

Jun 02, 2010
Beside counterfeit protection, the process is also suitable for an effective quality assurance: Here outlines characterize well-bonded and poorly bonded coatings on a function sheet. Such sheets are used to manufacture OLEDs. (© Armin Okulla/Harald Holeczek)

(PhysOrg.com) -- Counterfeit products create losses in the billions each year. Beside the economic damages, all too often additional risks arise from the poor materials and shoddy workmanship of "knock-off artists". Yet with the aid of fluorescing dyes, materials can be individually tagged and identified with certainty.

For quite some time now, product has been affecting more than just consumer goods, like watches and designer clothing. The producer industry also has to combat bogus and qualitatively inferior materials. Specialized security features, like watermarks, bar codes, RFID tags and holograms label the products, and thus safeguard them from falsification, theft and manipulation. So when it comes to security features: the more complicated it is to imitate a brand, the more secure the system.

A team of German researchers from four Fraunhofer Institutes recently engineered a brand new process that is particularly forgery-proof: "We add various fluorescing dyes to the entire material," explains Dr. Andreas Holländer of the Fraunhofer Institute for Applied Polymer Research IAP. "With the aid of the fluorescence, we can precisely ascertain specific characteristics, and thereby recognize if we are dealing with the original, and if the quality standards have been met."

Fluorescence can be found in certain organic dyes: Irradiate them within a certain wave length range, and they emit their own light with a greater wavelength. The type of luminosity - i.e., wavelength and light intensity - depends on the physical and chemical properties of the to which the dye was applied. Various dyes react to different properties, such as pH value or viscosity. For example, a certain dye glows in a tightly-interlaced resin more strongly than in one that is not as dense.

To make a product counterfeit-proof, the researchers therefore add multiple dyes to the material. "In this manner, an individualized marker emerges that is exceedingly difficult to imitate," says Holländer. Thanks to the slight dosing, it is virtually impossible to decode the type and quantity of the dye additives: just a few ppb (parts per billion) of dye concentrates suffice to mark the material. Another advantage: The counterfeit protection definitely cannot be removed. "Using conventional security features, the spot with the labeling can be eliminated from the material, theoretically speaking. But that approach doesn‘t work with our technology, since the dye permeates the entire material, and itself is a component of the identification label," says Holländer. Beside counterfeit protection, the process is also suitable for an effective quality assurance, such as with coatings: With the aid of various dyes, manufacturers can monitor the chemical composition, degree of dryness and the thickness of the coat during the production process.

The new technology has already passed the first practice tests: Researchers marked barrier sheets for organic light-emitting diodes (OLEDs) and photovoltaics with dyes a development from the Fraunhofer Polymer Surfaces Alliance POLO. The process is basically ready to be used - however, it still must be adapted to each material. A standard solution would also be contrary to the intention of the inventor: "One reason for the high degree of security of our technology is precisely because there are only material-specific solutions," reiterates Holländer.

Explore further: Researchers discover a way to cause surface coating properties to change in less than a second

add to favorites email to friend print save as pdf

Related Stories

The Dye with the Pumpkin Cuff

Jun 20, 2005

Complexation with a large cuff-shaped molecule stabilizes rhodamine dye fluorescence When irradiated, fluorescent dyes emit light at a different wavelength; for scientists and engineers, these dyes are extremely important aide ...

White glow: Dye-doped DNA nanofibers emit white light

Jul 08, 2009

(PhysOrg.com) -- Efficient energy transport plays an important role in the development of optoelectonic materials. The true masters of energy transfer via a hierarchical arrangement of different molecules are the photosynthetic ...

Nanoparticle Scattering Improves Laser Performance

Jun 04, 2009

(PhysOrg.com) -- “Light scattering” and “optical performance” are two concepts that usually head in opposite directions, but they have recently been shown to walk happily hand-in-hand. The results ...

An easy way to see the world's thinnest material

Dec 23, 2009

It's been used to dye the Chicago River green on St. Patrick's Day. It's been used to find latent blood stains at crime scenes. And now researchers at Northwestern University have used it to examine the thinnest material ...

'Holey' Nanosheets for Wastewater Dye Removal

Jul 01, 2009

(PhysOrg.com) -- Researchers have discovered that extremely thin sheets of nickel oxide with hexagonally shaped holes can absorb hazardous dyes from wastewater nearly as well as the best traditional methods, but are recyclable. ...

Recommended for you

Ice cream goes Southern, okra extracts may increase shelf-life

55 minutes ago

While okra has been widely used as a vegetable for soups and stews, a new study in the Journal of Food Science, published by the Institute of Food Technologists (IFT), shows how okra extracts can be used as a stabilizer in ice ...

The fluorescent fingerprint of plastics

6 hours ago

LMU researchers have developed a new process which will greatly simplify the process of sorting plastics in recycling plants. The method enables automated identification of polymers, facilitating rapid separation ...

Water and sunlight the formula for sustainable fuel

10 hours ago

An Australian National University (ANU) team has successfully replicated one of the crucial steps in photosynthesis, opening the way for biological systems powered by sunlight which could manufacture hydrogen ...

Rice chemist wins 'Nobel Prize of Cyprus'

10 hours ago

Rice University organic chemist K.C. Nicolaou has earned three prestigious international honors, including the Nemitsas Prize, the highest honor a Cypriot scientist can receive and one of the most prestigious ...

Researchers create engineered energy absorbing material

12 hours ago

(Phys.org) —Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. Gels are effective as padding but are relatively heavy; gel performance ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

gunslingor1
not rated yet Jun 02, 2010
It can be broken, gauranteed. Perhaps simply by buying the original, sheading lightwaves of different frequencies until the luminosity is obtained and matching the luminousity in the forgery. Gase spectroscopy could also discern the constituents.