Immune system helps transplanted stem cells navigate in central nervous system

Jun 01, 2010

By discovering how adult neural stem cells navigate to injury sites in the central nervous system, UC Irvine researchers have helped solve a puzzle in the creation of stem cell-based treatments: How do these cells know where to go?

Tom Lane and Kevin Carbajal of the Sue and Bill Gross Stem Cell Research Center found the answer with the body's .

Their study not only identifies an important targeting mechanism in transplanted stem cells but also provides a blueprint for engineering stem cell-based therapies for multiple sclerosis and other chronic neurological diseases in which occurs. Results appear in this week's early online edition of the .

"Previously, we've seen that adult neural stem cells injected into the spinal column knew, amazingly, exactly where to go," said Lane, Chancellor's Fellow and professor of molecular biology & biochemistry. "We wanted to find what directed them to the right injury spots."

The researchers used adult neural stem cells to treat mice with a disease similar to MS that destroys myelin, the protective tissue coating on nerves, causing chronic pain and loss of motor function. Adult neural stem cells have shown the ability to change - or differentiate - into oligodendrocytes, the building blocks of myelin, and repair or replace affected tissue.

In the mice, inflammatory cells - reacting to the virally induced nerve damage - were observed activating receptors on the adult neural stem cells. These CXCR-4 receptors, in turn, recruited chemokine proteins called CXCL-12 that guided the stem cells to specific sites. Chemokines are produced in acute and chronic inflammation to help mobilize white blood cells.

As the stem cells migrated through the , they began to transform into the precursor cells for oligodendrocytes. Latching onto their repair sites, they continued the differentiation process. Three weeks after the initial treatment, 90 percent of the cells had grown into fully formed oligodendrocytes.

In earlier work, Lane and colleagues demonstrated that adult neural stem cell treatments improved motor function in mice with chronic MS symptoms.

"In this study, we've taken an important step by showing the navigational cues in an inflammatory environment like MS that guide ," said Lane. "Hopefully, these cues can be incorporated into stem cell-based treatments to enhance their ability to repair injury."

Chris Schaumburg and Joy Kane of UCI and Dr. Robert Strieter of the University of Virginia participated in the study, which received support from the National Institutes of Health and the National Multiple Sclerosis Society.

Lane recently received a Collaborative MS Research Center Award from the National Society to assemble a team to investigate the use of cell replacement therapy to regenerate MS-ravaged nerve tissue.

Explore further: Novel marker discovered for stem cells derived from human umbilical cord blood

Provided by University of California - Irvine

5 /5 (3 votes)

Related Stories

New study hopeful on neural stem cells

Aug 05, 2006

Neural stem cells derived from federally approved human embryonic cells are inferior to stem cells derived from donated fetal tissue, a new study found.

Stem cells used to reverse paralysis in animals

Jan 28, 2009

A new study has found that transplantation of stem cells from the lining of the spinal cord, called ependymal stem cells, reverses paralysis associated with spinal cord injuries in laboratory tests. The findings show that ...

Recommended for you

New pain relief targets discovered

4 hours ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Building 'smart' cell-based therapies

5 hours ago

A Northwestern University synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other ...

Proper stem cell function requires hydrogen sulfide

8 hours ago

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

User comments : 0

More news stories

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Researchers discover target for treating dengue fever

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...

Our brains are hardwired for language

A groundbreaking study published in PLOS ONE by Prof. Iris Berent of Northeastern University and researchers at Harvard Medical School shows the brains of individual speakers are sensitive to language univer ...

Study recalculates costs of combination vaccines

One of the most popular vaccine brands for children may not be the most cost-effective choice. And doctors may be overlooking some cost factors when choosing vaccines, driving the market toward what is actually a more expensive ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...