Genome of bacteria responsible for tuberculosis of olive tree sequenced

Jun 01, 2010
This is an olive tree with tumors (warts) produced by tuberculosis Credit: Public University of Navarra

Researchers at the Public University of Navarra, the Polytechnic University of Madrid (CBGP), the University of Malaga, the University of Wisconsin and the Valencian Institute of Agricultural Research have managed to sequence the genome of the bacteria responsible for tuberculosis in the olive tree.

The study, included in the June issue of Environmental Microbiology, represents the first sequencing of the genome of a undertaken in Spain, being the first genome known worldwide of a pathogenic Pseudomonas in woody plants.

The sequencing of the genome of this pathogen opens the doors to the identification of the genes responsible for the virulence of this bacteria and its survival on the philosphere (leaf surface), thus facilitating the design of specific strategies in the fight against the disease and enabling drawing up programmes for the genetic improvement of olive groves.

Pseudomonas savastanoi is the agent that gives rise to tuberculosis in the olive tree, a disease that causes important losses in the olive crops in Spain. Trees affected present tumours (known as verrucas) that can grow to several centimetres diameter in trunks, branches, stalks and buds. Diseased trees are less robust and have less growth, to the point of being non-productive if the attack is very intense. To date, due to the absence of effective methods of control, preventive strategies have been carried out, reducing populations of with phytosanitary treatment.

Plant diseases produced by pathogenic microorganisms not only reduce production but can also alter the quality of the food and drastically diminish the commercial value of the crops. The new strategies for disease control today involve the analysis of information contained in the genome of pathogenic organisms. Similar to what has happened with the human , this technology is generating a great amount of valuable information for the development of innovative technologies, that will enable identifying and controlling the pathogen as well as obtaining new varieties of the host plant that have greater resistance to the disease.

Explore further: Molecular gate that could keep cancer cells locked up

add to favorites email to friend print save as pdf

Related Stories

Scientists decode genome of oral pathogen

Apr 05, 2007

Virginia Commonwealth University researchers have decoded the genome of a bacteria normally present in the healthy human mouth that can cause a deadly heart infection if it enters the bloodstream.

Genome of symbiotic tree fungus sequenced

Jul 25, 2006

U.S. government scientists have completed DNA sequencing of a fungus that forms a beneficial symbiosis with trees in North American and Eurasian forests.

Conquering conker canker

Apr 19, 2010

Scientists have decoded the genome of a bacterium that is threatening the UK's historic landscape.

Recommended for you

Molecular gate that could keep cancer cells locked up

Jul 31, 2014

In a study published today in Genes & Development, Dr Christian Speck from the MRC Clinical Sciences Centre's DNA Replication group, in collaboration with Brookhaven National Laboratory (BNL), New York, ...

The 'memory' of starvation is in your genes

Jul 31, 2014

During the winter of 1944, the Nazis blocked food supplies to the western Netherlands, creating a period of widespread famine and devastation. The impact of starvation on expectant mothers produced one of the first known ...

Sugar mimics guide stem cells toward neural fate

Jul 30, 2014

Embryonic stem cells can develop into a multitude of cells types. Researchers would like to understand how to channel that development into the specific types of mature cells that make up the organs and other structures of ...

User comments : 0