Scientists identify molecules that ensure red blood cell production

May 31, 2010
Scientists identify molecules that ensure red blood cell production
This microscopy image shows that, in a mouse embryo, MiR451 (dark purple) is produced only in the liver, where red blood cells are being formed at this developmental stage. Image credits: Kasper Rasmussen/EMBL

(PhysOrg.com) -- Red blood cells, the delivery men that take oxygen to cells all around the body, have short lives. To keep enough of them in circulation, the human body produces around 2 million of these cells every second - even more in response to challenges like severe blood loss.

In a study published today in the , scientists at the European Molecular Biology Laboratory (EMBL) in Monterotondo, Italy, and EMBL’s European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK, have identified two small which ensure that enough are produced efficiently, by fine-tuning a number of different genes involved in this process.

“A lot of the effort of blood , or haematopoiesis, goes into just keeping enough red blood cells in circulation” says Dónal O’Carroll, who led the work at EMBL Monterotondo: “We’ve identified two molecules that help to do so, and which are essential in challenging situations.”

To form red blood cells, large, round cells known as precursors have to become small and disc-shaped, like balls of plasticine squeezed between finger and thumb. In the process, they must also produce the large quantities of haemoglobin that will allow them to transport , and shrink and dispose of their nucleus. The EMBL scientists found that two microRNAs, called MiR144 and MiR451, control the final stages of this process.

O’Carroll and colleagues genetically engineered mice to have no MiR144 or MiR451. They found that such mice had defects in the final stages of red blood cell formation, but produced red blood cell precursors not only in the bone marrow, but also in large quantities in the spleen. By increasing the number of precursors, the mice compensated for the fact that a smaller percentage of those precursors matured into functional red blood cells, and thus were able to survive with only a mild anaemia.

“Under steady-state conditions, mice without MiR144 or MiR451 can just about produce enough red blood cells, but if you challenge them, by chemically inducing anaemia, most of them don’t survive, because in those conditions you just can’t live with inefficient red blood cell formation” O’Carroll explains.

O’Carroll and colleagues teamed up with Anton Enright’s group at EMBL-EBI, and used a sophisticated bioinformatics approach to understand how these microRNAs act. They found that of the two, MiR451 probably plays a key role in the process, and that it likely does so not by switching a single gene on or off, but by fine-tuning a multitude of involved in red blood cell formation.

These microRNA molecules have been conserved throughout vertebrate evolution. They are known to also be important for red blood cell formation in fish, and are likely to play a similar role in humans too. Thus, investigating their function further could help to understand how our own red blood cells are formed, and how defects in that process may lead to conditions such as anaemia.

Explore further: Clipping proteins that package genes may limit abnormal cell growth in tumors

More information: Rasmussen, K.D., Simmini, S., Abreu-Goodger, C., Bartonicek, N., Di Giacomo, M., Bilbao-Cortes, D., Horos, R., Von Lindern, M., Enright, A.J., & O’Carroll, D. The miR-144/451 locus is required for erythroid homeostasis, Journal of Experimental Medicine, Published online 31st May 2010.

Related Stories

An unexpected way to cause leukemia

Apr 07, 2008

Leukaemia – cancer of blood or bone marrow – is caused by mutations that allow defective blood cells to accumulate and displace healthy blood. To devise effective therapies it is crucial to know which mutations cause ...

MIT uncovers key blood protein

Oct 11, 2007

Scientists working in the only lab at MIT doing hematology research have uncovered a protein that plays a key role in the recycling of iron from blood.

A new way to boost red blood cell numbers

Jan 10, 2008

A common treatment for anemia — a deficiency in red blood cells (rbcs) caused by their insufficient production, excessive destruction, or excessive loss — is administration of recombinant erythropoietin (Epo), a hormone ...

Recommended for you

Organovo has 3D-printed liver tissue for drug testing

Nov 20, 2014

(Medical Xpress)—The commercial release of 3D printed liver tissue was announced earlier this week. Organovo is the company behind the release. The product is intended for use for preclinical drug discovery ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.