In deserts, which dunes are the most stable?

May 28, 2010
Longitudinal dunes reproduced in the laboratory. These structures are characteristically centimeter-sized. © Laboratoire de Matičre et Systčmes Complexes

By modeling a desert where the wind blows in two directions, French researchers from CNRS and Universite Paris Dideror have succeeded in observing and highlighting, for the very first time, the formation process and long-term evolution of two types of very large sand dunes: transverse dunes and longitudinal dunes.

They have demonstrated that longitudinal dunes and barchans - croissant-shaped dunes formed in a unidirectional wind regime - are the most stable over time. Their results should provide a better understanding of how dunes and deserts evolve on and also help to deduce important information concerning wind regimes on or Mars, for example. This work will be published in the June 2010 issue of the journal .

To study the formation and the stability of , Stéphane Douady's team has designed an ingenious device that reproduces, in miniature scale in the laboratory, the much larger dunes found in deserts. Their experimental model is made of glass beads set in motion by water in the same way as grains of sand are moved by winds. The advantages are that the resulting dunes formed of glass beads are small (a few centimeters) and build up rapidly under water. The resulting shapes are similar to wind-generated dunes, which has enabled researchers to study in detail the mechanisms involved in their formation.

Previous work carried out by the same team has focused on the dynamics of one type of dune: the barchan, which is formed when the wind regime is unidirectional (which is the case, for example, in the south Morocco desert). These croissant-shaped dunes are slowly moved by wind force. They are now well known and correspond to a relatively simple situation. Therefore, the researchers set about recreating, in the laboratory, more complex dunes that are formed under conditions where the wind blows alternatively in two directions. In real deserts, such conditions give rise to two types of dunes: transverse dunes, in other words aligned perpendicularly to the dominant wind direction, or instead longitudinal dunes (which lie parallel to the dominant wind direction). Their formation process and long-term evolution had never previously been reproduced and monitored: such dunes are very large, measuring several hundreds of meters or even several kilometers, and their morphological evolution is thus very slow.

Thanks to the experimental device they have developed, the team of scientists not only confirmed that these two types of dunes are indeed formed under bimodal wind regimes but also highlighted some major differences between them. On the one hand, transverse dunes are formed when the two wind directions are quite similar, whereas longitudinal dunes occur when the two directions are much further apart (the angle between the two wind directions exceeds 90°). In addition, providing there is no sizeable supply of sand, longitudinal dunes remain stable over time whereas transversal dunes, taken in isolation, always end up breaking down into several small barchan-type dunes. Consequently, the most stable dunes over time are barchans and longitudinal dunes (with no external sand supply).

These results provide essential insights into our understanding of how deserts form and evolve and the manner in which winds circulate on Earth. They could also help to determine patterns on other planets or satellites (Titan or Mars, for example). This model will enable planetologists to check whether the winds generated by their experimental models correspond to the actual shape of dunes observed by satellite.

Explore further: Ice in Arctic seas shrinks to sixth-lowest recorded

More information: Formation and stability of transverse and longitudinal sand dunes. E. Reffet, S. Courrech du Pont, P. Hersen, and S. Douady. Geology. June 2010.

add to favorites email to friend print save as pdf

Related Stories

Cassini Maps Global Pattern of Titan's Dunes

Feb 27, 2009

(PhysOrg.com) -- Titan's vast dune fields, which may act like weather vanes to determine general wind direction on Saturn's biggest moon, have been mapped by scientists who compiled four years of radar data ...

What determines the size of giant dunes?

Mar 04, 2009

Physicists at the Laboratory of Physics and Mechanics of Heterogeneous Media (CNRS / Université Paris Diderot / ESPCI ParisTech / Université Pierre et Marie Curie) have shown, in collaboration with scientists ...

Dazzling Dunes on Mars

Aug 10, 2004

As NASA's Opportunity rover creeps farther into "Endurance Crater," the dune field on the crater floor appears even more dramatic. On the left, an approximate true-color image highlights the reddish-colored ...

Mars Dunes: On the Move?

Mar 04, 2010

(PhysOrg.com) -- New studies of ripples and dunes shaped by the winds on Mars testify to variability on that planet, identifying at least one place where ripples are actively migrating and another where the ...

Recommended for you

Study links changing winds to warming in Pacific

8 hours ago

A new study released Monday found that warming temperatures in Pacific Ocean waters off the coast of North America over the past century closely followed natural changes in the wind, not increases in greenhouse ...

NASA image: Wildfires in Khabarovsk Krai, Russia

9 hours ago

Most of the fires captured in this image burn in Khabarovsk Krai, a territory occupying the coastline of the Sea of Okhotsk. Dozens of red hotspots, accompanied by plumes of smoke mark active fires. The smoke, ...

NASA sees Tropical Depression Polo winding down

12 hours ago

Infrared satellite imagery from NASA's Aqua satellite showed only a swirl of low-level clouds some deep clouds around Polo's weakening center on Sept. 22 as the storm weakened to a depression.

User comments : 0