Deep subduction of the Indian continental crust beneath Asia

May 28, 2010
The map shows the location of the study area in the Himalayas. Inset: A schematic shows the Indian plate subducting beneath the Asian plate. Credit: NOC

Geological investigations in the Himalayas have revealed evidence that when India and Asia collided some 90 million years ago, the continental crust of the Indian tectonic plate was forced down under the Asian plate, sinking down into the Earth's mantle to a depth of at least 200 km kilometers.

"The subduction of to this depth has never been reported in the and is also extremely rare in the rest of world," said Dr Anju Pandey of the National Oceanography Centre in Southampton, who led the research.

Pandey and her colleagues used sophisticated analytical techniques to demonstrate the occurrence of relict majorite, a variety of mineral garnet, in rocks collected from the Himalayas.

Majorite is stable only under ultra-high pressure conditions, meaning that they must have been formed very deep down in the Earth's crust, before the subducted material was exhumed millions of years later.

"Our findings are significant because researchers have disagreed about the depth of subduction of the Indian plate beneath Asia," said Pandey.

In fact, the previous depth estimates conflicted with estimates based on computer models. The new results suggest that the leading edge of the Indian plate sank to a depth around double that of previous estimates.

"Our results are backed up by computer modelling and will radically improve our understanding of the subduction of the Indian continental crust beneath the Himalayas," said Pandey.

The new discovery is also set to modify several fundamental parameters of Himalayan , such as the rate of Himalayan uplift, angle, and subduction of the Indian plate.

The new research findings were published this month in the journal Geology.

Explore further: Lightning plus volcanic ash make glass

More information: Pandey, A, Leech, M., Milton, A., Singh, P. & Verma, P. K. Evidence of former majoritic garnet in Himalayan eclogite points to 200-km-deep subduction of Indian continental crust. Geology 38, 399-402 (2010). doi:10.1130/G30584.1

Provided by National Oceanography Centre, Southampton

4.3 /5 (10 votes)

Related Stories

Australian discovery solves mystery of the Andes

Mar 14, 2007

A research team led by an ANU scientist has solved the mystery behind the formation of the Andes by discovering how the jostling of tectonic plate boundaries affects geological formations.

New Sumatra quake takes seismologists by surprise

Oct 01, 2009

The huge earthquake that hit Sumatra occurred at a deep, unexpected location, illustrating the dangerously complex geological mosaic in this area, a seismologist told AFP on Thursday.

Hot Fluids and Deep Earthquakes

May 08, 2007

Fluids in the Earth's lower crust are an underlying force in shaking things up where continental plates slip under each other, according to a study recently published in Nature. Donna Eberhart-Phillips, a UC Davis researcher ...

Plate tectonics may take a break

Jan 03, 2008

Plate tectonics, the geologic process responsible for creating the Earth’s continents, mountain ranges, and ocean basins, may be an on-again, off-again affair. Scientists have assumed that the shifting of crustal plates ...

Recommended for you

Lightning plus volcanic ash make glass

10 hours ago

In their open-access paper for Geology, Kimberly Genareau and colleagues propose, for the first time, a mechanism for the generation of glass spherules in geologic deposits through the occurrence of volcan ...

A new level of earthquake understanding

15 hours ago

As everyone who lives in the San Francisco Bay Area knows, the Earth moves under our feet. But what about the stresses that cause earthquakes? How much is known about them? Until now, our understanding of ...

Combined Arctic ice observations show decades of loss

18 hours ago

It's no surprise that Arctic sea ice is thinning. What is new is just how long, how steadily, and how much it has declined. University of Washington researchers compiled modern and historic measurements to ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.