New weapon against highly resistant microbes within grasp

May 27, 2010

An active compound from fungi and lower animals may well be suitable as an effective weapon against dangerous bacteria. We're talking about plectasin, a small protein molecule that can even destroy highly resistant bacteria. Researchers at the Universities of Bonn, Utrecht, Aalborg and of the Danish company Novozymes AS have shed light on how the substance does this. The authors see plectasin as a promising lead compound for new antibiotics.

These results will be published in Science journal on 28th May.

More and more are becoming resistant to normal antibiotics. This is especially true for the methicillin-resistant (MRSA). Most of the pharmaceutical weapons are now useless against these MRSA strains . According to estimates, as many as every second patient in the USA treated by intensive-care medicine comes down with an MRSA infection.

Plectasin could shift the balance of power back in the doctors' favour. But how exactly does the little do that? The Bonn researchers in Dr. Tanja Schneider and Professor Hans-Georg Sahl's team have answered these questions together with Danish and Dutch colleagues. Thus plectasin disrupts the forming of the cell wall in bacteria so that the pathogens can no longer divide.

Theft at the bacteria's construction site

In this process, plectasin behaves like a thief which steals the stones off a mason. 'It binds to a cell-wall building block called lipid II and thus prevents it from being incorporated ,' Professor Sahl explains. 'However, bacteria cannot live without a cell wall.' It comes as no surprise that the most famous antibiotic penicillin also inhibits cell-wall synthesis.

Yet plectasin is more similar in its mode of action to another widely used drug, vancomycin. Vancomycin had been the drug of choice in combating strains since the 1980s. Meanwhile, though, there are more and more bacteria that are also resistant to . 'However, these strains are still susceptible to plectasin,' Dr. Tanja Schneider emphasises. Nevertheless, there is no permanent solution to the resistance problem even with a new antibiotic . 'It is always just a question of time until the pathogens mutate and become insensitive ,' she says. 'It's a never ending arms race.'

Plectasin belongs to the class of defensins. These defence molecules are widespread among fungi, animals and also plants. Humans, for example, produce defensins on their skin and in this way nip infections in the bud. 'Defensins not only kill pathogens but also alert the immune system', Dr. Hans-Henrik Kristensen from the Danish company Novozymes AS explains. 'So the pharmaceutical industry is setting its hopes on them.'

Explore further: Researchers discover target for treating dengue fever

add to favorites email to friend print save as pdf

Related Stories

Nanotechnology used to probe effectiveness of antibiotics

Feb 04, 2009

A group of researchers led by scientists from the London Centre for Nanotechnology, in collaboration with a University of Queensland researcher, have discovered a way of using tiny nano-probes to help understand how an antibiotic ...

Study unveils lifeline for 'antibiotic of last resort'

Apr 11, 2010

A new study led by the scientific director of the Michael G. DeGroote Institute for Infectious Disease Research has uncovered for the first time how bacteria recognize and develop resistance to a powerful antibiotic used ...

Researchers analyze how new anti-MRSA abtibiotics function

Jul 28, 2008

A new paper by Shahriar Mobashery, Navari Family Professor in Life Sciences at the University of Notre Dame, and researchers in his lab provides important insights into promising new antibiotics aimed at combating MRSA.

'Surprising link' leads toward a new antibiotic

May 28, 2009

(PhysOrg.com) -- As the best drugs become increasingly resistant to superbugs, McMaster University researchers have discovered a completely different way of looking for a new antibiotic.

New antibiotic beats superbugs at their own game

Jul 03, 2008

The problem with antibiotics is that, eventually, bacteria outsmart them and become resistant. But by targeting the gene that confers such resistance, a new drug may be able to finally outwit them. Rockefeller ...

Recommended for you

Researchers discover target for treating dengue fever

9 hours ago

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...

Tracking flu levels with Wikipedia

9 hours ago

Can monitoring Wikipedia hits show how many people have the flu? Researchers at Boston Children's Hospital, USA, have developed a method of estimating levels of influenza-like illness in the American population by analysing ...

User comments : 0

More news stories

Chronic inflammation linked to 'high-grade' prostate cancer

Men who show signs of chronic inflammation in non-cancerous prostate tissue may have nearly twice the risk of actually having prostate cancer than those with no inflammation, according to results of a new study led by researchers ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...