Biomedical Researchers Develop Device to Predict Wound Healing

May 25, 2010

(PhysOrg.com) -- The new device can change the current landscape of chronic wound management.

Complex wounds affect more patients in the United States than heart attack and stroke combined, and five to seven million Americans with complex wounds account for over $20 billion in healthcare expenditures. About 150,000 amputations a year result from complex wounds, while about 80,000 are attributed to diabetes and . There are currently no established methods for early detection of wound healing, or for precise identification of healing progress. Wound size is the only accepted indicator despite its variability and the fact that is reflects only what is happening on the surface.

A new breakthrough device developed by researchers can change the current landscape of chronic wound management. Researchers at Drexel University’s School of Biomedical Engineering, Science and Health Systems developed a prototype device that measures the level of oxygenated and deoxygenated within and under a wound and compares it to a control/non-wound site of the same patient. Based on a human study at the Wound Clinic of the Drexel College of Medicine, the time course of oxygenated hemoglobin change was found to be a strong indicator of wound healing.

Diffuse Near-Infrared Spectroscopy allows tissue to be non-invasively analyzed by measuring its optical absorption and scattering coefficients. A “diagnostic window” exists at near (650 -900 nm) allowing determination of tissue at significant depths, because light is able to penetrate several centimeters into tissue due to low absorption of hemoglobin. The absorption spectra of oxy-hemoglobin and deoxy-hemoglobin are distinct at near-infrared wavelengths and with proper instrumentation the absolute concentrations of each can be determined.

A device prototype has been developed and tested over the course of several years. The device is controlled by software from a laptop computer and can move from patient to patient in a busy clinical setting. Measurements can be taken at any spot within or around the wound and take seconds to complete. Results are displayed on the computer screen almost instantly following the measurement. Improved prototypes are being designed. In its final stages the device will become more portable.

Advantages of the Drexel technology:

• Fast quantitative method for characterizing diabetic and pressure ulcers.
• Quantitative assessment of ischemic tissue in a broad variety of clinical applications.
• Ability to predict due to therapy at least 50 percent earlier (four weeks as opposed to 8 weeks or more) compared to conventional methods.

Funding for the project is supported through a Coulter Foundation Translational Research grant. The Coulter Foundation is a private, nonprofit foundation dedicated to supporting biomedical engineering translational research that addresses unmet health care needs.

Explore further: Growing a blood vessel in a week

add to favorites email to friend print save as pdf

Related Stories

Artificial skin system can heal wounds

Dec 20, 2007

A new study in Artificial Organs tested the effects of a wound dressing created with hair follicular cells. The findings reveal that skin substitutes using living hair cells can increase wound healing.

Wound monitor 'sniffs out' infections

Mar 14, 2006

The University of Manchester has received £1m to develop a new device able to 'sniff out' harmful infections. The funding will be used to create a non-invasive wound monitor to treat patients with severe burns, skin ulcers ...

Study uses bone marrow stem cells to regenerate skin

Jan 14, 2009

A new study suggests that adult bone marrow stem cells can be used in the construction of artificial skin. The findings mark an advancement in wound healing and may be used to pioneer a method of organ reconstruction. The ...

Gene Therapy Hastens Healing Process in Chronic Leg Ulcers

Dec 03, 2009

(PhysOrg.com) -- Chronic wounds, including venous leg ulcers which are caused by poor circulation in the veins of the legs, are difficult and expensive to treat. Researchers at the University of Pennsylvania School of Medicine ...

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0