Scientists find important new step in protein production

May 21, 2010

(PhysOrg.com) -- Scientists at the University of Manchester have identified an extra step in protein production, a major activity of all cells, which they believe impacts particularly on how our cells respond to stresses such as starvation and virus attack.

Drs Graham Pavitt and Martin Jennings, whose findings are published in Nature on 20 May 2010, have found a new function for a protein, called eIF5, which is critical for appropriate and normal control of the protein production process.

(or synthesis) takes place within ribosomes - complex structures made of and proteins - and is facilitated by a number of accessory factors that enhance its rate and tightly control the whole process, which is central to all cell activities. In experimental models, changes that alter protein synthesis control can lead to obesity, diabetes and even altered memory functions within the brain. In addition when many viruses attack, they use our protein synthesis pathways to produce more viruses. There is a war inside the infected cells, which fight back to try to shut down protein synthesis and prevent production of new infectious virus.

The new findings show that the protein synthesis factor eIF5 not only promotes by activating a second factor (called eIF2), it also has a second function which locks eIF2 in a 'switched-off' state; that is, it regulates the overall process as well as activating it. This second function is necessary for control of production in times of stress.

Dr Pavitt, at Manchester's Faculty of Life Sciences, said: "We investigated how simple sensed and responded to changes in their nutrition, specifically to for , which are essential building blocks for proteins. Now we know there is another important step in this process, one that is particularly important in the cellular response to stress."

He added: "Although we used yeast cells in our study, there is sufficient similarity in the mechanism across all cells to suggest that the new regulatory function operates in a similar or identical manner in mammalian cells, including man.

"Further work is now required to determine if these new findings will have consequences for our deeper understanding of human health and disease."

Explore further: Scientists find key to te first cell differentiation in mammals

More information: The paper 'eIF5 has GDI activity necessary for translational control by eIF2 phosphorylation' is available from the Nature website.

Related Stories

Researchers discover how microRNAs control protein synthesis

Jul 09, 2007

While most RNAs work to create, package, and transfer proteins as determined by the cell’s immediate needs, miniature pieces of RNA, called microRNAs (miRNAs) regulate gene expression. Recently, researchers from the University ...

Viral infection affects important cells' stress response

Nov 14, 2007

Viral infection disrupts the normal response of mammalian cells to outside deleterious forces, cleaving and inactivating a protein called G3BP that helps drive the formation of stress granules, which shelter the messenger ...

New understanding of protein's role in brain

Mar 25, 2010

How do we process thoughts and store memories? A team of researchers headed by Dr. Nahum Sonenberg of McGill's Department of Biochemistry and Goodman Cancer Centre has discovered that brains in mammals modify a particular ...

Getting wise to the influenza virus' tricks

May 04, 2008

Influenza is currently a grave concern for governments and health organisations around the world. The worry is the potential for highly virulent bird flu strains, such as H5N1, to develop the ability to infect humans easily. ...

Recommended for you

Research helps identify memory molecules

17 hours ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Computer simulations visualize ion flux

18 hours ago

Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology ...

Neutron diffraction sheds light on photosynthesis

18 hours ago

Scientists from ILL and CEA-Grenoble have improved our understanding of the way plants evolved to take advantage of sunlight. Using cold neutron diffraction, they analysed the structure of thylakoid lipids found in plant ...

DNA may have had humble beginnings as nutrient carrier

Sep 01, 2014

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

Sep 01, 2014

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0