3-D model of blood flow by supercomputer predicts heart attacks

May 20, 2010
The left coronary arteries show the ramification of vessels and the red blood cells flowing in one sub-region. The longest coronary arteries have a size of few centimeters and the red blood cells have a linear size of about 10 microns. Credit: EPFL

EPFL Laboratory of Multiscale Modeling of Materials, in Switzerland, has developed a flowing 3D model of the cardiovascular system that should allow for predictions of certain heart diseases before they become dangerous.

The supercomputer Cadmos, installed at the Ecole Polytechnique Fédérale de Lausanne (EPFL) in August of 2009, has bared one of its first fruits: the Laboratory of Multiscale.

Modeling of Materials has recently developed a computer program the accurately models the complex system of blood flow in the heart for individuals at an unheard-of precision of ten millionths of a meter or ten microns. These individual-specific models—which take up to six hours using a supercomputer—will allow for a detailed study of the and lead to early predictions of heart conditions such as arteriosclerosis, or the hardening of arteries that often leads to heart attacks. Plans are in the works to develop the program for individual PCs for clinical applications within the next two to three years.

"When studying the blood flow in arteries, one has to take into account a vast number of different fluid interactions that happen on different time scales and of different sizes," explains Simone Melchionna, who heads the project. Based on a detailed heart scan, the simulation juggles over a billion different variables in order to represent a fluid containing ten-million red blood cells. Using another supercomputer based in Juelich (Germany), the research team has achieved even greater precision with their program that allows for the visualization of the interaction of plasma, red blood cells and even micro-particles. "We can evaluate all of the elements and how they interact with each other; move, stagnate and whirl and turn over each other," Melchionna adds.

This precision will allow for the detection of the first signs of arteriosclerosis when the plaques begin to form on the artery's walls and disturb . This condition, which creates dangerous rigidity and blockage of these vital vessels, is the main cause of heart attacks—responsible for 12% of deaths in the world. This mortality rate increases to 16% in richer countries, where greasy and cholesterol rich foods are more common. Early detection of the forces leading to arteriosclerosis is one element in the strategy developed by EPFL and the universities of Geneva and Lausanne to rationalize the investment in a of 16,000 microprocessors—the equivalent of 8,000 PCs.

Explore further: Wearable artificial kidney safety testing receives go-ahead

Provided by Ecole Polytechnique Fédérale de Lausanne

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Circulatory system on a chip lets scientists mimic heartbeat

Jun 28, 2005

A tiny chip that mimics a circulatory system—right down to the rhythm of a human heart beat—could be an invaluable tool in understanding the causes of cardiovascular disease and developing drug therapies. The system of ...

World's biggest heart model simulated

Jan 18, 2008

Researchers from the Université de Montréal have used a supercomputer to conduct the largest-ever mathematical simulation of the electrical activity of a human heart – a 2 billion element model – to provide new insight ...

Measuring and modeling blood flow in malaria

Nov 23, 2009

When people have malaria, they are infected with Plasmodium parasites, which enter the body from the saliva of a mosquito, infect cells in the liver, and then spread to red blood cells. Inside the blood cells, the parasites ...

Recommended for you

A novel therapy for sepsis?

16 hours ago

A University of Tokyo research group has discovered that pentatraxin 3 (PTX3), a protein that helps the innate immune system target invaders such as bacteria and viruses, can reduce mortality of mice suffering ...

Cellular protein may be key to longevity

Sep 15, 2014

Researchers have found that levels of a regulatory protein called ATF4, and the corresponding levels of the molecules whose expression it controls, are elevated in the livers of mice exposed to multiple interventions ...

User comments : 0