New type of supernova may shed light on some universal mysteries

May 19, 2010 By Robert Sanders
One theory of this new exploding system is that a white dwarf steals helium from a companion until the mass thief becomes very hot and dense and a nuclear explosion occurs. The helium is transformed into elements such as calcium and titanium, eventually producing the building blocks of life for future generations of stars.(Avishay Gal-Yam; Weizmann Institute of Science)

( -- In the past decade, robotic telescopes have turned astronomers' attention to scads of strange exploding stars, one-offs that may or may not point to new and unusual physics.

But supernova (SN) 2005E, discovered five years ago by the University of California, Berkeley's Katzman Automatic Imaging Telescope (KAIT), is one of eight known "calcium-rich supernovae" that seem to stand out as horses of a different color.

"With the sheer numbers of supernovae we're detecting, we're discovering weird ones that may represent different physical mechanisms compared with the two well-known types, or may just be variations on the standard themes," said Alex Filippenko, KAIT director and UC Berkeley professor of astronomy. "But SN 2005E was a different kind of 'bang.' It and the other calcium-rich supernovae may be a true suborder, not just one of a kind."

Filippenko is coauthor of a paper appearing in the May 20 issue of the journal Nature describing SN 2005E and arguing that it is distinct from the two main classes of supernovae: the Type Ia supernovae, thought to be old, white dwarf stars that accrete matter from a companion until they undergo a that blows them apart entirely; and Type Ib/c or Type II supernovae, thought to be hot, massive and short-lived stars that explode and leave behind or .

The team of astronomers, led by Hagai Perets, now at the Harvard-Smithsonian Center for Astrophysics, and Avishay Gal-Yam of the Weizmann Institute of Science in Rehovot, Israel, presents evidence that the original star was a low-mass white dwarf stealing helium from a binary companion until the temperature and pressure ignited a thermonuclear explosion - a massive fusion bomb - that blew off at least the outer layers of the star and perhaps blew the entire star to smithereens.

The researchers calculate that about half of the mass thrown out was calcium, which means that a couple of such supernova every 100 years would be enough to produce the high abundance of calcium observed in galaxies like our own Milky Way, and the calcium present in all life on Earth.

Interestingly, a team of researchers from Hiroshima University in Japan argue in the same issue of Nature that SN 2005E's original, or progenitor, star was massive - between 8 and 12 solar masses - and that it underwent a core-collapse similar to a Type II supernova.

"It's a confusing, muddy situation now," said Filippenko. "But we hope that, by finding more examples of this subclass and of other unusual supernovae and observing them in greater detail, we will find new variations on the theme and get a better understanding of the physics that's actually going on."

To make things even muddier, Filippenko and former UC Berkeley post-doctoral fellow Dovi Poznanski, currently at Lawrence Berkeley National Laboratory and also coauthor on the Nature paper, reported last November another supernova, SN 2002bj, that they believe explodes by a similar mechanism: ignition of a helium layer on a white dwarf.

"SN 2002bj is arguably similar to SN 2005E, but has some clear observational differences as well," Filippenko said. "It was likely a white dwarf accreting helium from a companion star, though the details of the explosion seem to have been different because the spectra and light curves differ."

Astronomers have so far found only one example of this beast, however.

Filippenko and UC Berkeley research astronomer Weidong Li first reported an unusual calcium-rich supernova in 2003, and since then, KAIT has discovered several more, including SN 2005E on Jan. 13, 2005. Because these supernovae, like Type Ib, show evidence for helium in their spectra shortly after they explode, and because in the later stages they show strong calcium emission lines, the UC Berkeley astronomers were the first to refer to them as "calcium-rich Type Ib supernovae."

It was SN 2005E, which went off about 110 million years ago in the spiral galaxy NGC 1032 in the constellation Cetus, that initially drew the attention of Perets, Gal-Yam and their colleagues. Using data provided by Filippenko and Li, as well as by the W. M. Keck Observatory in Hawaii, the Palomar Observatory in Los Angeles and the Liverpool Observatory in the United Kingdom (U.K.), they created a detailed picture of the explosion. The small amount of mass ejected in the explosion, estimated at 30 percent the mass of our sun, and the fact that the galaxy in which the explosion occurred was old with few hot, giant stars, led them to the conclusion that a low-mass white dwarf was involved.

In addition, the newly discovered supernova threw off unusually high levels of the elements calcium and radioactive titanium, which are the products of a nuclear reaction involving helium rather than the carbon and oxygen involved in Type Ia supernovae.

"We know that SN 2005E came from the explosion of an old, low-mass star because of its specific location in the outskirts of a galaxy devoid of recent star formation," said Filippenko. "And the presence of so much calcium in the ejected gases tells us that helium must have exploded in a nuclear runaway."

The paper's authors note that, if these eight calcium-rich superonovae are the first examples of a common, new type of supernova, they could explain two puzzling observations: the abundance of calcium in galaxies and in life on Earth, and the concentration of positrons - the anti-matter counterpart of the electron - in the center of galaxies. The latter could be the result of the decay of radioactive titanium-44, produced abundantly in this type of supernova, to scandium-44 and a positron, prior to scandium's decay to calcium-44. The most popular explanation for this positron presence is the decay of putative dark matter at the core of galaxies.

"Dark matter may or may not exist," says Gal-Yam, "but these positrons are perhaps just as easily accounted for by the third type of ."

Filippenko and Li hope that KAIT and other robotic telescopes scanning distant galaxies every night in search of new supernovae will turn up more examples of calcium-rich or even stranger supernovae.

"The research field of supernovae is exploding right now, if you'll pardon the pun," joked Filippenko. "Many supernovae with peculiar new properties have been found, pointing to a greater richness in the physical mechanisms by which nature chooses to explode stars."

Explore further: Lucky star escapes black hole with minor damage

Related Stories

Peculiar, junior-sized supernova discovered by New York teen

Jun 11, 2009

In November 2008, Caroline Moore, a 14-year-old student from upstate New York, discovered a supernova in a nearby galaxy, making her the youngest person ever to do so. Additional observations determined that the object, called ...

Rapid supernova could be new class of exploding star

Nov 05, 2009

( -- An unusual supernova rediscovered in seven-year-old data may be the first example of a new type of exploding star, possibly from a binary star system where helium flows from one white dwarf ...

Brightest supernova in a decade captured by Hubble

Sep 03, 2004

A University of California, Berkeley, astronomer has turned the NASA Hubble Space Telescope on the brightest and nearest supernova of the past decade, capturing a massive stellar explosion blazing with the li ...

The purple rose of Virgo

Mar 27, 2007

Until now NGC 5584 was just one galaxy among many others, located to the West of the Virgo Cluster. Known only as a number in galaxy surveys, its sheer beauty is now revealed in all its glory in a new VLT image. ...

A Superbright Supernova That’s the First of Its Kind

Dec 02, 2009

( -- An extraordinarily bright, extraordinarily long-lasting supernova named SN 2007bi, snagged in a search by a robotic telescope, turns out to be the first example of the kind of stars that first ...

Recommended for you

Image: Galactic wheel of life shines in infrared

11 hours ago

It might look like a spoked wheel or even a "Chakram" weapon wielded by warriors like "Xena," from the fictional TV show, but this ringed galaxy is actually a vast place of stellar life. A newly released ...

New window on the early Universe

Oct 22, 2014

Scientists at the Universities of Bonn and Cardiff see good times approaching for astrophysicists after hatching a new observational strategy to distill detailed information from galaxies at the edge of ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (4) May 19, 2010
You can explain the complete range of supernove morphologies with a plasma pinch. No need to speculate on a different blackhole-neutron star, 2 Nstars, core collapse etc. mechanisms.

Just one. Z-pinch with different energies and plasma compositions.

"Maps of 70 well resolved remnants are used to examines the incidence of the barrel-shaped morphology.
From statistics we argue that the majority of supernova remnants fall into the barrel category."
Barrel shaped Supernova Remnants.

Not only that most of the supernova remnants are aligned with the galactic axis.
5 / 5 (1) May 20, 2010
The paper you quoted is a survey of SNR in our galaxy. The authors make no mention of a 'Z-pinch' mechanism being responsible for any of them. Do you know of any published papers of individual *extragalactic* supernovae (not supernova remnants) that specifically invoke a 'Z-pinch' mechanism?
1 / 5 (4) May 20, 2010
Fragmentation does seem to dominate the cosmos.

The energy source is probably repulsive forces between neutrons ["Attraction and repulsion of nucleons: Sources of stellar energy", Journal of Fusion Energy 19 (2001) 93-98].

Oliver K. Manuel