Wine-making yeast shows promise for bioethanol production

May 13, 2010

Researchers from the Stanford University School of Medicine have identified a gene in the yeast Saccharomyces cerevisiae that might be important for ethanol production from plant material, providing insights into the bioethanol alternative to 'fossil fuels'. Combining new high-throughput genome sequencing technology with traditional genetic methods, this study highlights the previously unknown potential of natural S. cerevisiae strains to convert five-carbon sugars such as xylose into ethanol. Details are published May 13 in the open-access journal PLoS Genetics.

S. cerevisiae is the primary organism used in the fermentation process required for industrial bioethanol production. However, despite voraciously fermenting the six-carbon sugars, such as glucose, found in cornstarch or cane, it was not thought to be able to ferment the five-carbon sugars that are abundant in agricultural wastes or dedicated crops like . As the industry moves towards plant-based ethanol, a strain of yeast that can ferment both types of sugar equally well is highly desirable.

Therefore, Jared Wenger and Katja Schwartz sought to identify previously unstudied Saccharomyces yeast strains with some ability to ferment xylose. They found a number of strains, primarily used in wine-making, which could metabolize this important sugar in order to grow slowly. They studied one strain in particular, applying a new genome sequencing technology to determine the genetic basis of its growth - the presence of a single gene they named XDH1.

Although the ability of these naturally occurring yeasts to grow on this sugar is modest and they are still not as capable at using xylose as other, genetically-modified strains, this discovery may lead to the development of new, industrially-applicable strains of S. cerevisiae for use in large-scale bioethanol production.

Explore further: Environmental pollutants make worms susceptible to cold

More information: Wenger JW, Schwartz K, Sherlock G (2010) Bulk Segregant Analysis by High-Throughput Sequencing Reveals a Novel Xylose Utilization Gene from Saccharomyces cerevisiae. PLoS Genet 6(5): e1000942. doi:10.1371/journal.pgen.1000942

Related Stories

Super-fermenting fungus genome sequenced

Mar 05, 2007

On the road to making biofuels more economically competitive with fossil fuels, there are significant potholes to negotiate. For cellulosic ethanol production, one major detour has being addressed with the characterization ...

Sugar-hungry yeast to boost biofuel production

Mar 29, 2010

Engineering yeast to transform sugars more efficiently into alcohols could be an economically and environmentally sound way to replace fossil fuels, say scientists presenting at the Society for General Microbiology's spring ...

Recommended for you

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Interactions of Earth's smallest players have global impact

Sep 19, 2014

A new study reveals the interactions among bacteria and viruses that prey on them thriving in oxygen minimum zones—stretches of ocean starved for oxygen that occur around the globe. Understanding such microbial ...

A new quality control pathway in the cell

Sep 18, 2014

Proteins are important building blocks in our cells and each cell contains millions of different protein molecules. They are involved in everything from structural to regulatory aspects in the cell. Proteins are constructed ...

User comments : 0