Nanotube transistor controlled by ATP could improve man-machine communication

May 13, 2010 by Lisa Zyga weblog

Scientists have built a hybrid bionanoelectronic transistor that can be powered by ATP, or adenosine triphosphate, the energy currency in living cells. The researchers, Aleksandr Noy and colleagues from Lawrence Livermore National Lab, claim that the new transistor is the first integrated bioelectronic system, and could provide a way to integrate electronics with the body.

"I hope that this type of technology could be used to construct seamless bioelectronic interfaces to allow better communication between and machines," Noy said.

The ATP-powered transistor consists of a carbon nanotube stretched between two . The ends of the nanotube are coated with an insulating polymer layer, and the entire system is then coated in a lipid bi-layer, which is similar to the coating in cell membranes.

When the scientists applied a voltage across the electrodes and poured a solution containing ATP, , and sodium ions onto the device, it caused a current to flow through the electrodes. The more ATP used, the stronger the current became.

As the scientists explain, the device works this way due to a protein in the lipid bi-layer that acts as an ion pump when exposed to ATP. During each cycle, the protein pumps three in one direction and two potassium ions in the opposite direction, resulting in the net pumping of one charge across the bi-layer to the nanotube. When the ions build up, they create an electric field around the middle of the nanotube, increasing its conductivity.

In other words, the system works by transforming the nanoscale mechanical energy from the movement of ions into electricity. In this way, the transistor could be used to build that can be powered and controlled with biological signals. For example, it could lead to electronics that reside permanently inside the body without requiring batteries or external power supplies, as well as prosthetic devices that can be wired directly into the body’s nervous system.

Explore further: Solving molybdenum disulfide's 'thin' problem

More information: Shih-Chieh J. Huang, et al. "Carbon Nanotube Transistor Controlled by a Biological Ion Pump Gate." Nano Letters. Doi:10.1021/nl100499x
via: New Scientist

add to favorites email to friend print save as pdf

Related Stories

Spintronic transistor is developed

Oct 23, 2005

Researcher Christian Schoenenberger and colleagues at the University of Basel, Switzerland, developed a carbon nanotube transistor, opening a promising avenue toward the introduction of spin-based devices into computer chips, ...

Crystal clues to better batteries

Feb 19, 2007

Longer-lasting laptop and mobile phone batteries could be a step closer thanks to research by scientists at the University of Oxford.

Recommended for you

Solving molybdenum disulfide's 'thin' problem

Mar 27, 2015

The promising new material molybdenum disulfide (MoS2) has an inherent issue that's steeped in irony. The material's greatest asset—its monolayer thickness—is also its biggest challenge.

Snowflakes become square with a little help from graphene

Mar 25, 2015

The breakthrough findings, reported in the journal Nature, allow better understanding of the counterintuitive behaviour of water at the molecular scale and are important for development of more efficient techno ...

Nanostructure complex materials modeling  

Mar 25, 2015

Materials with chemical, optical, and electronic properties driven by structures measuring billionths of a meter could lead to improved energy technologies—from more efficient solar cells to longer-lasting ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) May 13, 2010
This could lead to some cool brain interfaces, spinal cord repair, and medical implants.
not rated yet May 13, 2010
Seems like a natural for power/control of insulin pumps in diabetics. Brilliant work.
not rated yet May 14, 2010
The machines can turn it around and us for batteries.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.