Cellular Workouts Strengthen Endothelial Cells' Grasp

May 13, 2010
Cellular Workouts Strengthen Endothelial Cells' Grasp
Blue dye show microneedles, red dye represent cell nuclei. Tugging forces shown in white.

(PhysOrg.com) -- University of Pennsylvania bioengineers have demonstrated that the cells that line blood vessels respond to mechanical forces -- the microscopic tugging and pulling on cellular structures -- by reinforcing and growing their connections, thus creating stronger adhesive interactions between neighboring cells.

Adherens junctions, the structures that allow cohesion between cells in a tissue, appear to be modulated by endothelial cell-to-cell tugging forces. Both the size of junctions and the magnitude of tugging force between cells grow or decay in concert with activation or inhibition of the molecular motor .

The findings extend the understanding of multi-cellular mechanics. The dynamic adaptation of cell-cell adhesions to forces may explain how cells can maintain multi-cellular integrity in the face of different mechanical environments. Understanding how forces affect cell-cell adhesion could provide new opportunities for therapies targeting acute and chronic dysfunction of blood vessels.

Because these adhesions between endothelial cells are what allow these cells to form a tight seal between the blood inside vessels and the surrounding tissues, the research also suggests that changes in mechanical forces might induce endothelial cells to modulate the "tightness" of adhesions with each other, which may then modify the permeability of blood vessels. In many disease states, such as , diabetes and in tumor vasculature, fail to form the type of tight adhesions with each other that are necessary to prevent the vessels from leaking into the surrounding tissue.

It is known that myosin activity is required for cell-generated contractile forces and that myosin affects cellular organization within tissues through the generation of mechanical forces against the actin cytoskeleton; however, whether forces drive changes in the size of cell-cell adhesions remained an open question. The team demonstrated that, when “exercised,” the actomyosin cytoskeleton in a pair of cells can generate substantial tugging force on adherens junctions, and, in response, the junctions grow stronger. To prove a causal relationship, the group showed that exogenous forces, applied through a micromanipulator, also cause junction growth. This study marks the first time cell-generated forces at the adherens junction have been measured.

To investigate the responsiveness of adherens junctions to tugging force, bioengineer Chris Chen and his laboratory adapted a system of microfabricated force sensors to determine quantitative measurements of force and junction size. Researchers fabricated microneedles (3 microns wide, 9 microns tall, or one-fiftieth the size of a human hair) from a rubber polymer, polydimethylsiloxane, and coated them with an adhesive protein to allow cell attachment. This adhesive protein was transferred to the microneedle substrates in “bowtie patterns” which coaxed the cells to form pairs of cells with a single, cell-cell contact between them. Each cell in the pair attached to about 30 microneedles, and the researchers were able to measure the deflection of the needles as cells exerted traction (inward pulling) forces. The deflection of the needles was proportional to the amount of force generated by the structure.

“The role that physical forces play in cellular behavior has become better understood over the last ten years,” said Chen, the Skirkanich Professor of Innovation in bioengineering in the School of Engineering and Applied Science at Penn. “Now we know that cell structures under mechanical stress don’t necessarily break; they reinforce. Unlike passive adhesion such as with glue or tape, the cell-matrix and cell-cell adhesions that cells use as footholds to attach to surfaces and each-other are adaptive; when they experience force, they hold on tighter.”

In prior research, Chen’s team has demonstrated that the push and pull of cellular forces drives the buckling, extension and contraction of cells during tissue development. These processes ultimately shape the architecture of tissues and play an important role in coordinating cell signaling, gene expression and behavior, and they are essential for wound healing and tissue homeostasis in adult organisms.

Explore further: Researchers successfully clone adult human stem cells

add to favorites email to friend print save as pdf

Related Stories

Stiffening arteries could change cell behavior

Feb 26, 2009

(PhysOrg.com) -- Like skin that loses elasticity, blood vessels lose their pliability and stiffen with age. In more than half of the U.S. population over 65, this stiffening of the blood vessels is accompanied ...

Coming Soon: Blood Vessels from a Test Tube?

Jun 04, 2007

Our tissues and organs consist of a complex, closely balanced assembly of different types of cells, extracellular matrix, and special signal-carrying molecules. The growth of such structures in the laboratory, perhaps for ...

Recommended for you

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

Apr 18, 2014

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

For resetting circadian rhythms, neural cooperation is key

Apr 17, 2014

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...