Stem cells use GPS to generate proper nerve cells

May 11, 2010

An unknown function that regulates how stem cells produce different types of cells in different parts of the nervous system has been discovered by Stefan Thor, professor of Developmental Biology, and graduate students Daniel Karlsson and Magnus Baumgardt, at Linköping University in Sweden. The results improve our understanding of how stem cells work, which is crucial for our ability to use stem cells to treat and repair organs. The findings are publishing next week in the online, open-access journal PLoS Biology.

Stem cells are responsible for the creation of all cells in an organism during development. Previous research has shown that give rise to different types of cells in different parts of the nervous system. This process is partly regulated by the so-called , which are active in various parts of the body and work to give each piece its unique regional identity - a kind of GPS system of the body. But how does a stem cell know that it is in a certain region? How does it read the body's "GPS" signals? And how is this information used to control the creation of specific nerve cells?

In order to address these issues, the LiU researchers studied a specific stem cell in the nervous system of the fruit fly. It is present in all segments of the nervous system, but it is only in the thorax, or chest region, that it produces a certain type of nerve cell. To investigate why this cell type is not created in the stomach or head region they manipulated the Hox genes' activity in the fly embryo.

It turned out that the Hox genes in the stomach region stop stem cells from splitting before the specific cells are produced. In contrast, the specific nerve cells are actually produced in the head region, but the Hox genes turn them into another, unknown, type of cell. Hox genes can thus exert their influence both on the genes that control stem cell division behaviour and on the genes that control the type of that are created.

"We constantly find new regulating mechanisms, and it is probably more difficult than previously thought to routinely use stem cells in treating diseases and repairing organs, especially in the nervous system", says Thor.

Explore further: How plant cell compartments change with cell growth

More information: Karlsson D, Baumgardt M, Thor S (2010) Segment-Specific Neuronal Subtype Specification by the Integration of Anteroposterior and Temporal Cues. PLoS Biol 8(5): e1000368. doi:10.1371/journal.pbio.1000368

Related Stories

'Scrawny' gene keeps stem cells healthy

Jan 07, 2009

(PhysOrg.com) -- Stem cells are the body's primal cells, retaining the youthful ability to develop into more specialized types of cells over many cycles of cell division. How do they do it? Scientists at the ...

Recommended for you

How plant cell compartments change with cell growth

8 hours ago

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

8 hours ago

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

9 hours ago

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

9 hours ago

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

kevinrtrs
1 / 5 (1) May 12, 2010
We constantly find new regulating mechanisms, and it is probably more difficult than previously thought...

The implications are of course legion: it's becoming more and more difficult to envision how evolution could have generated new construction and start-up information from existing genes, given the stringent control and regulation mechanisms required.
neiorah
1 / 5 (1) May 13, 2010
And we are supposed to believe in only evolution, the we came from ooze. Give me a break
Skeptic_Heretic
not rated yet May 19, 2010
The implications are of course legion: it's becoming more and more difficult to envision how evolution could have generated new construction and start-up information from existing genes, given the stringent control and regulation mechanisms required.

It's called emergence and it's an easily recognized phenominon.