Stem cells use GPS to generate proper nerve cells

May 11, 2010

An unknown function that regulates how stem cells produce different types of cells in different parts of the nervous system has been discovered by Stefan Thor, professor of Developmental Biology, and graduate students Daniel Karlsson and Magnus Baumgardt, at Linköping University in Sweden. The results improve our understanding of how stem cells work, which is crucial for our ability to use stem cells to treat and repair organs. The findings are publishing next week in the online, open-access journal PLoS Biology.

Stem cells are responsible for the creation of all cells in an organism during development. Previous research has shown that give rise to different types of cells in different parts of the nervous system. This process is partly regulated by the so-called , which are active in various parts of the body and work to give each piece its unique regional identity - a kind of GPS system of the body. But how does a stem cell know that it is in a certain region? How does it read the body's "GPS" signals? And how is this information used to control the creation of specific nerve cells?

In order to address these issues, the LiU researchers studied a specific stem cell in the nervous system of the fruit fly. It is present in all segments of the nervous system, but it is only in the thorax, or chest region, that it produces a certain type of nerve cell. To investigate why this cell type is not created in the stomach or head region they manipulated the Hox genes' activity in the fly embryo.

It turned out that the Hox genes in the stomach region stop stem cells from splitting before the specific cells are produced. In contrast, the specific nerve cells are actually produced in the head region, but the Hox genes turn them into another, unknown, type of cell. Hox genes can thus exert their influence both on the genes that control stem cell division behaviour and on the genes that control the type of that are created.

"We constantly find new regulating mechanisms, and it is probably more difficult than previously thought to routinely use stem cells in treating diseases and repairing organs, especially in the nervous system", says Thor.

Explore further: How a molecular Superman protects the genome from damage

More information: Karlsson D, Baumgardt M, Thor S (2010) Segment-Specific Neuronal Subtype Specification by the Integration of Anteroposterior and Temporal Cues. PLoS Biol 8(5): e1000368. doi:10.1371/journal.pbio.1000368

Related Stories

'Scrawny' gene keeps stem cells healthy

Jan 07, 2009

(PhysOrg.com) -- Stem cells are the body's primal cells, retaining the youthful ability to develop into more specialized types of cells over many cycles of cell division. How do they do it? Scientists at the ...

Recommended for you

Over-organizing repair cells set the stage for fibrosis

41 minutes ago

The excessive activity of repair cells in the early stages of tissue recovery sets the stage for fibrosis by priming the activation of an important growth factor, according to a study in The Journal of Ce ...

Cell architecture: Finding common ground

Oct 16, 2014

When it comes to cellular architecture, function follows form. Plant cells contain a dynamic cytoskeleton which is responsible for directing cell growth, development, movement, and division. So over time, changes in the cytoskeleton ...

Scientists identify "naïve-like" human stem cell

Oct 16, 2014

Scientists from our university and Berlin have identified a type of human stem cell that appears to be "naïve-like" – able to develop into any type of cell. The discovery of this cell type could potentially ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

kevinrtrs
1 / 5 (1) May 12, 2010
We constantly find new regulating mechanisms, and it is probably more difficult than previously thought...

The implications are of course legion: it's becoming more and more difficult to envision how evolution could have generated new construction and start-up information from existing genes, given the stringent control and regulation mechanisms required.
neiorah
1 / 5 (1) May 13, 2010
And we are supposed to believe in only evolution, the we came from ooze. Give me a break
Skeptic_Heretic
not rated yet May 19, 2010
The implications are of course legion: it's becoming more and more difficult to envision how evolution could have generated new construction and start-up information from existing genes, given the stringent control and regulation mechanisms required.

It's called emergence and it's an easily recognized phenominon.