New study helps explain how botulism-causing toxin can enter circulation

May 10, 2010

New research in the Journal of Cell Biology helps explain how the toxic protein responsible for botulism can enter circulation from the digestive system. The study appears online May 10.

Botulism, a rare but serious paralytic illness, is caused by botulinum neurotoxin (BoNT), an extremely toxic protein that is produced by the bacterium Clostridium botulinum. In food-borne botulism, the nontoxic components of BoNT—including hemagglutinin (HA)—protect the from the low pH and enzymes encountered in the digestive tract. BoNT then passes through the intestinal epithelial barrier to enter circulation from the gut.

Although studies have examined how BoNT crosses the intestinal epithelial barrier, the mechanism by which it accomplishes this feat has remained a mystery. In this study, a team of Japanese researchers led by Yukako Fujinaga shows that HA plays a role. HA binds epithelial cadherin (E-cadherin), disrupting E-cadherin-mediated cell-to-cell adhesion and thereby disrupting the epithelial barrier.

Interestingly, the research demonstrates a species-specific interaction between HA and E-cadherin. Although HA binds human, bovine, and mouse E-cadherin, for instance, it does not bind rat or chicken.

Explore further: Sizing up cells: Study finds possible regulator of growth

More information: Sugawara, Y., et al. 2010. J. Cell Biol. doi:10.1083/jcb.200910119

add to favorites email to friend print save as pdf

Related Stories

Discovery of a mechanism that regulates cell movement

Jul 20, 2008

A study performed by researchers at the Institute for Research in Biomedicine (IRB Barcelona), in collaboration with researchers at the Instituto de Biología Molecular of the CSIC, reveal a mechanism that controls the movement ...

Recommended for you

The origins of polarized nervous systems

5 hours ago

(Phys.org)—There is no mistaking the first action potential you ever fired. It was the one that blocked all the other sperm from stealing your egg. After that, your spikes only got more interesting. Waves ...

New fat cells created quickly, but they don't disappear

9 hours ago

Once fat cells form, they might shrink during weight loss, but they do not disappear, a fact that has derailed many a diet. Yale researchers in the March 2 issue of the journal Nature Cell Biology descri ...

A single target for microRNA regulation

10 hours ago

It has generally been believed that microRNAs control biological processes by simultaneously, though modestly, repressing a large number of genes. But in a study published in Developmental Cell, a group ...

Sizing up cells: Study finds possible regulator of growth

Mar 02, 2015

Modern biology has attained deep knowledge of how cells work, but the mechanisms by which cellular structures assemble and grow to the right size largely remain a mystery. Now, Princeton University researchers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.