Scientists identify a new protein involved in longevity

May 07, 2010

Researchers in the Department of Biochemistry and Molecular Biology at Thomas Jefferson University have found that the level of a single protein in the tiny roundworm C. elegans determines how long it lives. Worms born without this protein, called arrestin, lived about one-third longer than normal, while worms that had triple the amount of arrestin lived one-third less.

The research also showed that arrestin interacts with several other proteins within cells to regulate longevity. The human version of one of these proteins is PTEN, a well-known tumor suppressor. The study, to be published in the online edition of the , was chosen by the journal as the "Paper of the Week" - considered in the top one percent of published articles.

Because most proteins in worms have human counterparts, these findings may have relevance to human biology and the understanding of , said Jeffrey L. Benovic, Ph.D., professor and chair of the department.

"The links we have found in worms suggest the same kind of interactions occur in mammals although human biology is certainly more complicated. We have much work to do to sort out these pathways, but that is our goal," said Dr. Benovic.

Researchers use the roundworm as a model because it offers a simple system to study the function of genes and proteins that are relevant to human biology. The worm, for example, has one arrestin gene, whereas humans have four. Worms only have 302 neurons compared to the 100 billion or so in the human brain. In addition, their short lifespan of two to three weeks allows for timely observation of effects on longevity.

Dr. Benovic and the study's first author, Aimee Palmitessa, Ph.D., a postdoctoral research fellow, studied signaling pathways activated by G protein-coupled receptors. These receptors bind to all kinds of hormones, sensory stimuli (such as light, odorants and tastants), neurotransmitters, etc., which then activate a cascade of signals inside the cell. They regulate many physiological processes and are the target for about half of the drugs currently on the market.

"When it comes to receptors, worms are actually more complex," said Dr. Benovic. "Humans have about 800 different kinds of G protein-coupled receptors while the worm has about 1,800. It relies upon these receptors to respond to sensory stimuli as well as various neurotransmitters and hormones."

Arrestins were initially found to turn off the activation of G protein-coupled receptors inside cells. "Their name comes from the fact that they arrest the activity of receptors, so the worm offers a good way to study how its single arrestin protein interacts with protein receptors," says Dr. Benovic. Two of the four arrestins that humans have are devoted to regulating receptors that respond to visual stimuli while the other two regulate most other receptors.

In this study, Dr. Palmitessa deleted the single arrestin gene in worms to see what would happen, and found, to her surprise, that these worms lived significantly longer. She also found that over-expressing arrestin in worms shortened their lifespan. "A little less arrestin is good - at least for worms," Dr. Benovic reported.

This isn't the first discovery made regarding longevity in worms. Researchers have already found that activity of the insulin-like growth factor-1 (IGF-1) receptor can influence longevity in worms - a finding that has also been replicated in fruit flies, mice, and humans. Like arrestin, a little less IGF-1 receptor activity is good, Dr. Benovic explained. Further research has shown that caloric restriction can also reduce IGF-1 receptor activation and, conversely, over-expression of the IGF-1 receptor is found in some human cancers.

In this study, Dr. Benovic and Dr. Palmitessa dug a little deeper and found that in the , arrestin interacted with two other proteins that play a critical role in its ability to regulate longevity. One of those proteins is the tumor suppressor PTEN; mutations in PTEN are involved in a number of different cancers.

Dr. Benovic said the connection between human arrestin and PTEN is not clear. "We don't know at this point if human arrestins regulate PTEN function or if anything happens to arrestin levels during the development of cancer," he said. "Do increasing levels turn off more PTEN, thus promoting cancer, or do levels decrease and allow PTEN to be more active?

"If it turns out to be the first scenario - that increasing amounts of arrestin turn off the activity of PTEN, then it may be possible to selectively inhibit that process," he says. "We have some interesting work ahead."

Explore further: Researchers take 'first baby step' toward anti-aging drug

Related Stories

New target for heart failure therapy identified

Mar 16, 2009

A novel signaling pathway plays a significant role in the production of aldosterone, a hormone that promotes heart failure after a myocardial infarction, according to a study conducted by Thomas Jefferson University researchers.

New approach for growing bone

Oct 07, 2009

The natural cycle of building bone to maintain skeletal strength and then breaking it down for the body's calcium needs is delicately balanced, but diseases like osteoporosis break down too much bone without adequate bone ...

Some antipsychotic drugs may be missing their mark

Jan 01, 2008

Drugs that treat depression, schizophrenia and other psychotic conditions and that target a particular protein on brain cells might not be triggering the most appropriate response in those cells, new research suggests.

Researchers Discover How Lithium Works

Jan 14, 2008

Despite more than 30 years of widespread use of lithium to control psychiatric disorders, such as bipolar disorder, scientists have been uncertain about how this drug actually works on a molecular level.

Recommended for you

Biomedical team creates 'nerve on a chip'

17 hours ago

Michael J. Moore and J. Lowry Curley first met in the laboratory as professor and student. Now the two Tulane University researchers have started a new biomedical company that's winning praise and awards.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.