Researchers isolate microalgal strain that could reduce cholesterol

May 03, 2010

Ben-Gurion University of the Negev (BGU) researchers have isolated a microalgal strain which produces large amounts of a polyunsaturated fatty acid that could reduce blood pressure, chronic inflammation and blood cholesterol level, reducing the risk for heart attacks.

A research team at BGU's Landau Family Microalgal Biotechnology Lab in the Jacob Blaustein Institutes for Desert Research (BIDR) headed by Prof. Zvi HaCohen, is studying an algal mutant that is capable of accumulating up to 15 percent (of dry weight) of a polyunsaturated fatty acid (PUFA) called DGLA (Dihomo-γ-Linolenic Acid). The new strain, IKG-1, is a freshwater microalga that the researchers believe is the only known plant source capable of producing such significant amounts of DGLA.

"Omega-6 PUFA are necessary as components of brain cell membranes and have various nutritional uses," explains HaCohen, incumbent of the Maks and Rochelle Etingin Chair in Desert Research and rector-elect at BGU. "DGLA is one of these PUFA, but appears in nature only as an intermediate in the biosynthesis of other compounds and does not accumulate to any appreciable concentration. There is no natural source for DGLA and although its beneficial effects are well known, very few clinical studies have been conducted."

The research team also included the director of the Landau Laboratory, Prof. Sammy Boussiba; director of the BIDR Prof. Avigad Vonshak; Dr. Inna Khozin-Goldberg; and Ph.D. student Pushkar Shrestha.

"The significant discovery of the IKG-1 microalgal mutant and its high content of DGLA could impact treatment of life-threatening diseases, such as chronic inflammations, multiple sclerosis and arteriosclerosis," explains Dr. Ora Horovitz, vice president of business development for BGN Technologies, the technology transfer and commercialization subsidiary of BGU.

"Our Microalgal Biotechnology Laboratory continues to be a leading innovator in its work on microalgae and its products harnessing Negev resources, such as brackish water and highly abundant sunlight. BGU is continuing to develop valuable pharmaceuticals and nutraceuticals, as well as biofuels and other potential alternative energy sources."

Explore further: Human brain has coping mechanism for dehydration

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Diet affects men's and women's gut microbes differently

6 minutes ago

The microbes living in the guts of males and females react differently to diet, even when the diets are identical, according to a study by scientists from The University of Texas at Austin and six other institutions published ...

Researchers explore what happens when heart cells fail

1 hour ago

Through a grant from the United States-Israel Binational Science Foundation, Biomedical Engineering Associate Professor Naomi Chesler will embark upon a new collaborative research project to better understand ...

Stem cells from nerves form teeth

3 hours ago

Researchers at Karolinska Institutet in Sweden have discovered that stem cells inside the soft tissues of the tooth come from an unexpected source, namely nerves. These findings are now being published in the journal Nature and co ...

User comments : 0