Sound could save circuits: Researchers theorize acoustic waves may cool microelectronics

Apr 28, 2010

(PhysOrg.com) -- "Hot sounds" has one meaning to music fans and another to physicists. Count a team of researchers at Rice University among the latter, as they've discovered that acoustic waves traveling along ribbons of graphene might be just the ticket for removing heat from very tiny electronic devices.

A theoretical model by Rice physicist Boris Yakobson and his students has determined graphene - a single-layer honeycomb of and the focus of much materials science and electronics research - can transmit in waves. Given the elastic properties of graphene, long waves of the acoustic kind seem to work best. Because the scattering properties of graphene are low, such waves can go fast and far, unobstructed by each other or by imperfections in the material.

You'd never hear anything, no matter how close you put your ear to the nanoscale ribbon, Yakobson said. But to the researchers, the implications are clear as a bell.

"On this scale, graphene has promise for fundamental reasons," said Yakobson, a Rice professor in mechanical engineering and materials science and of chemistry and part of a program recently named No. 1 in the world for the quality of its research. "The speed of sound is the speed with which energy can be carried away, because is transported, essentially, through vibrations."

Yakobson and his co-authors, former postdoctoral associate Enrique Muñoz, now an assistant professor in the Department of Mathematics and Physics at the University of Playa Ancha in Chile, and Jianxin Lu, a Rice graduate student, published their results last week in the online edition of the journal .

Muñoz, the paper's primary author, said the "nearly ballistic behavior" of phonons, considered sound's equivalent to light's photons, makes the graphene material 10 times better than copper or gold at conducting heat.

The trick to making such graphene-enabled heat pipes effective will be to figure out where the heat goes when it gets to the end of the ribbon, an issue Lu continues to study for both nanoribbons and nanotubes. Without an effective interface, the propagating waves of phonons would simply bounce back.

"You need another medium," Yakobson said. "That's why I say this is more of a heat pipe than a heat sink, because at the far end of the graphene, you need contact with fluid, in a gas or liquid phase, so this wave energy can dissipate."

The power density of current microelectronics would, on a macro scale, be enough to heat a teapot to boiling in seconds. So it's becoming increasingly important to remove heat from sensitive instruments and release it to the air in a hurry.

"We're dealing with a very high heat density - maybe a kilowatt per centimeter square," Yakobson said. "When you want to barbecue, such heat is very useful. But in this case, you'd basically barbecue your device."

Finding a way to deal with transmitting heat away from ever-smaller devices is critical to sustaining Moore's Law, which accurately predicted (so far) that the number of transistors that could be placed on an integrated circuit would double about every two years.

"Another interesting application of these ribbons is in the construction of waveguides," Muñoz added. "Graphene ribbons could be pieces in a nanoscale circuit where phonons, instead of electrons, serve as information carriers in a different computer architecture."

Explore further: Team finds electricity can be generated by dragging saltwater over graphene

More information: Read the abstract here: pubs.acs.org/doi/abs/10.1021/nl904206d

Related Stories

Unzipping Carbon Nanotubes Can Make Graphene Ribbons

Apr 20, 2009

(PhysOrg.com) -- By "unzipping" carbon nanotubes, researchers have shown how to make flat graphene ribbons. Graphene, which is a one-atom-thick sheet of carbon that looks like chicken wire, has unique electrical ...

Light-speed nanotech: Controlling the nature of graphene

Jan 21, 2009

Researchers at Rensselaer Polytechnic Institute have discovered a new method for controlling the nature of graphene, bringing academia and industry potentially one step closer to realizing the mass production ...

Researcher Uses Graphene Quilts to Keep Things Cool

Dec 21, 2009

(PhysOrg.com) -- University of California, Riverside Professor of Electrical Engineering and Chair of Materials Science and Engineering Alexander Balandin is leading several projects to explore ways to use ...

Recommended for you

First direct observations of excitons in motion achieved

Apr 16, 2014

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

sender
not rated yet Apr 29, 2010
phonon signalling in a fracton bus architecture could really speak tomes of power

More news stories

Physicists create new nanoparticle for cancer therapy

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...