'Molecular glass fibers'

Apr 26, 2010

Dutch nanotechnologists from the MESA+ research institute of the University of Twente have discovered that the photosynthesis system of bacteria can be used to transport light over relatively long distances. They have developed a type of 'molecular glass fibre', a thousand times thinner than a human hair. The results of their research are published in the April edition of the leading journal Nano Letters.

All plants and some use photosynthesis to store energy from the sun. Researchers from the MESA+ Institute for Nanotechnology of the University of Twente have now discovered how parts of the photosynthesis system of bacteria can be used to transport . In their experiments the researchers used isolated proteins from the so-called Light Harvesting Complex (LHC). These proteins transport the sunlight in the of plants and bacteria to a place in the cell where the is stored. The researchers built a type of 'molecular glass fibre' from the LHC proteins that is a thousand times thinner than a human hair.

In the experiment the researchers fastened the proteins onto a fixed background. They positioned them in a line, and in this way formed a thread. They then shone to one point in the thread, and observed where the light went to. The line with the LHC proteins did not only transport the light, but transported it over much longer distances than the researchers had initially expected. Distances of around 50 nanometres are normally bridged in the bacteria from which the LHC proteins were isolated. In the researchers' experiments the light covered distances at least thirty times greater.

According to Cees Otto, one of the researchers involved, we can learn a lot from nature in experiments such as this. "The LHC proteins are the building blocks that nature gives us, and using then we can learn more about natural processes such as the transport of light in photosynthesis. When we understand how nature works, we can then imitate it. In time we will be able to use this principle in, for example, solar panels."

Explore further: The latest fashion: Graphene edges can be tailor-made

More information: The article 'Long-Range Energy Propagation in Nanometre Arrays of Light Harvesting Antenna Complexes' by Maryana Escalante, Aufried Lenferink, Yiping Zhao, Niels Tas, Jurriaan Huskens, Neil Hunter, Vinod Subramaniam and Cees Otto was published in the April edition of the scientific journal Nano Letters.

add to favorites email to friend print save as pdf

Related Stories

Substantial improvement in essential cheap solar cell process

Mar 20, 2008

A cheap alternative to silicon solar cells can be found in dye-sensitised solar cells. This type of cell imitates the natural conversion of sunlight into energy by, for instance, plants and light-sensitive bacteria. Annemarie ...

Bacteria shed light on an important group of human proteins

Nov 19, 2007

A collaboration between researchers in Switzerland, the UK and France has led to the solution of the first crystal structure of a member of the Rhesus protein family and thereby shed new light on a group of proteins of great ...

'Molecular movies' to reveal the dynamic lives of proteins

Jun 30, 2008

Capturing moving images of tiny protein molecules is the aim of a new research project announced today at Imperial College London. The research will reveal, on extremely short timescales, the miniscule movements of proteins ...

Recommended for you

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

Graphene brings quantum effects to electronic circuits

Jan 22, 2015

Research by scientists attached to the EC's Graphene Flagship has revealed a superfluid phase in ultra-low temperature 2D materials, creating the potential for electronic devices which dissipate very little ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.