New understanding of gating mechanism of CFTR chloride channel

Apr 26, 2010

New research advances our understanding of the gating mechanism of the CFTR, the chloride channel mutated in cystic fibrosis patients. The study by Tzyh-Chang Hwang and colleagues (University of Missouri), and accompanying Commentary by László Csanády (Semmelweis University) appear in the May issue of the Journal of General Physiology.

CFTR is a member of the superfamily of ABC proteins found in all organisms, from bacteria to human. The 48 human ABC proteins mostly mediate transmembrane export of substrates at the expense of ATP hydrolysis. They are involved in a wide variety of physiological processes, ranging from insulin secretion to drug detoxification.

Like other ABC proteins, CFTR encompasses two nucleotide binding domains (NBD1 and NDB2), which form a dimer. It is generally accepted that CFTR's opening-closing cycles, each completed within one second, are driven by rapid ATP binding and hydrolysis events in NBD2. Now, using real-time recording, Hwang and colleagues tackle the fundamental question of whether the NBD dimer fully dissociates in each gating cycle, and they provide strong evidence that it does not. The authors propose a gating model for CFTR with a "partial" separation of the NBD dimer, with two distinct cycles.

Explore further: Structure of sodium channels different than previously believed

More information:
Tsai, M.-F., M. Li, and T.-C. Hwang. 2010. J. Gen. Physiol. doi:10.1085/jgp.201010399
Csanády, L. 2010.J. Gen. Physiol. doi:10.1085/jgp.201010443

add to favorites email to friend print save as pdf

Related Stories

Experiments point to new treatments for PKD

Apr 02, 2008

A family of small molecules called CFTR inhibitors show promising effects in slowing the progression of polycystic kidney disease (PKD), the most common genetic disease of the kidneys, according to preliminary research reported ...

Recommended for you

Breakthrough points to new drugs from nature

Apr 16, 2014

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

Apr 16, 2014

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...