Blocking single gene aids spinal cord injuries: researchers

Apr 22, 2010

Shutting off the function of a single gene in the body could someday help victims of spinal cord injuries avoid paralysis, researchers announced Wednesday.

The discovery potentially opens the door to new treatments and improved long-term recovery from such injuries which often result in life-long damage and sky-high rehabilitation and hospitalization costs.

Researchers said they administered a drug to lab mice and rats that shut off a specific gene which kicks in after a spinal cord injury.

The gene, Abcc8, is part of the body's protective reaction in the event of spinal cord damage.

The gene activates the Sulfonylurea receptor-1 (Sur1) protein, which can paradoxically end up inflicting more damage to the spinal cord's own cells, according to lead researcher Marc Simard of the University of Maryland School of Medicine.

Sur1 uses sodium to protect cells from an excess of calcium that floods a severely injured area, but the defense mechanism sends the into overdrive, allowing an unchecked influx of sodium into the cells, which can lead to cell death.

"By shutting down the Abcc8 gene that encodes the Sur1 protein the researchers were able to halt the self-destructive process and improve long-term recovery in spinal cord injured mice," according to a summary of the report published in Science Translational Medicine.

Simard's team studied spinal cord tissue from humans, mice and rats and found that the same process of cell death and destruction brought on by Sur1 was present in each of the species.

Shutting the gene off allowed researchers to preserve in the mice, with lesions between one-third and one-fourth the size of those in the control animals.

Researchers neutralized Abcc8 in mice using oligodeoxynucleotide, a short, single strand of DNA which clings to and temporarily blocks their activation.

About half of people with become paraplegic.

A sharp blow on the spine can fracture or dislocate the vertebrae, which in turn can crush and destroy the branches of neurons in the spinal cord which send signals to and from the brain.

Simard's research, which would still need years of clinical trials before a drug using the Abcc8 neutralizer can be sold publicly, lead to treatment which significantly reduces the destruction of nerve tissue in the aftermath of a injury.

Explore further: Growing a blood vessel in a week

add to favorites email to friend print save as pdf

Related Stories

Stem cells used to reverse paralysis in animals

Jan 28, 2009

A new study has found that transplantation of stem cells from the lining of the spinal cord, called ependymal stem cells, reverses paralysis associated with spinal cord injuries in laboratory tests. The findings show that ...

Stem cells improve damaged spines in mice

Feb 05, 2009

A team of researchers at Keio University has succeeded in improving spinal cord damage in mice by transplanting into them neural stem cells produced with human induced pluripotent stem (iPS) cells, they said.

Recommended for you

Growing a blood vessel in a week

22 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0