Researchers identify key molecular step to fighting off viruses

Apr 21, 2010

UT Southwestern Medical Center researchers have determined how a protein that normally latches onto molecules inside cells and marks them for destruction also gives life to the body's immune response against viruses.

The researchers discovered that a certain form of the "death" ubiquitin interacts with another protein, called RIG-I, but does not mark it for destruction. Instead, this form of ubiquitin binds to and activates RIG-I, which is known to trigger the body's when a virus invades a cell.

Dr. Zhijian "James" Chen, professor of molecular biology at UT Southwestern, is senior author of the study, which is available online and in the journal Cell.

Dr. Chen and his colleagues reconstituted key elements of the human innate immune system in laboratory test tubes and found ubiquitin forms a unique chain-like structure that associates with RIG-I before RIG-I can get to work fighting viruses. The innate immune system is the body's first generic response against invading pathogens.

"Activation of RIG-I is the first line of our immune defenses against ," said Dr. Chen, an investigator for the Howard Hughes Medical Institute at UT Southwestern. "Understanding how it comes to life is a key step in developing new approaches to antiviral therapies. Having this test-tube system could help us identify substances that enhance the body's antiviral immunity."

Dr. Chen said his team's experiments mark the first time innate immunity has been recapitulated in a test tube. The findings provide one of the missing pieces in the complex puzzle of how the body fights off infection, he added.

Dr. Chen is now focusing on how activated RIG-I interacts with another protein called MAVS, also essential for .

Explore further: The impact of bacteria in our guts

Related Stories

Flick of a protein switches immune response

Jul 27, 2006

A single protein can turn on and off a key component of the immune system by changing partners in an elegant genomic dance, said researchers at the University of Southern California and Harvard Medical School.

Recommended for you

The impact of bacteria in our guts

Aug 22, 2014

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

Aug 22, 2014

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

Aug 22, 2014

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments : 0