Researchers study galaxy mergers

Apr 19, 2010
This is an optical (left) and infrared (right) image of an IR-bright merging galaxy. The center of the merger is obscured in the left image, but in the infrared (right) the central disk is very bright and easily seen. Credit: Optical image from the Hubble Space Telescope and infrared image from the University of Hawaii 88

Scientists at the Naval Research Laboratory (NRL) have solved a long-standing dilemma about the mass of infrared bright merging galaxies. Because galaxies are the largest directly observable objects in the universe, learning more about their formation is key to understanding how the universe works.

Dr. Barry Rothberg and Dr. Jacqueline Fischer, both of the Infrared-Submillimeter & Techniques Section in the Remote Sensing Division, used new data from the 8-meter Gemini-South telescope in Chile along with earlier results from the W. M. Keck-2 10-meter and University of Hawaii 2.2-meter telescopes in Hawaii and archival data from the Hubble Space Telescope, to solve the problem. They have published a paper on their research findings on galaxy evolution in the Astrophysical Journal (March 20, 2010 Volume 712).

Galaxies in the Universe generally come in two shapes, spiral, like our own Milky Way, and elliptical, in which the stars move in random orbits, Rothberg explains. The largest galaxies in the Universe are elliptical in shape and how they formed is central to our understanding how the Universe has evolved over the last 15 billion years. The long-standing theory has been that spiral galaxies merge with each other forming most of the elliptical galaxies in the Universe. Spiral galaxies contain significant amounts of cold hydrogen gas. When they merge, the beautiful spiral patterns are destroyed and the gas is converted into new stars. The more gas present in the spiral galaxies, the more stars are formed and with it, large amounts of dust. The dust is heated by the young stars and radiates energy at infrared wavelengths.

Until recently scientists thought that these infrared bright merging galaxies were not massive enough to be the precursors of most elliptical galaxies in the . The problem lay in the method of measuring their mass. The conventional method of measuring mass in dusty IR-bright galaxies uses near-infrared light to measure the random motions of old-stars. The larger the random motions, the more mass is present. Using near-infrared light makes it possible to penetrate the dust and see as many of the old stars as possible. However, a complication occurs when spiral galaxies merge, because most of their gas is funneled to the gravitational center of the system and forms a rotating disk. This rotating disk of gas is transformed into a rotating disk of young stars that is also very bright at near-infrared wavelengths. The rotating disk of young stars both outshines the old stars and makes it appear as if the old stars have significantly less random motion. In contrast to this conventional method, Rothberg and Fischer instead observed the random motions of old stars at shorter wavelengths effectively using the dust to their advantage to block the light from the young stars. Their new results showed that the old stars in merging galaxies have large random motions, which means they will eventually become very massive elliptical .

The next step for NRL researches is to directly observe the stellar disks in IR luminous mergers using three-dimensional spectroscopy. Each pixel is a spectrum, and from this the researchers can make two-dimensional maps of stellar motion and stellar age. This will allow them to measure the size, rotation, luminosity, mass and age of the central disk.

Explore further: Is the universe finite or infinite?

add to favorites email to friend print save as pdf

Related Stories

Baby booms and birth control in space

Sep 25, 2007

Stars in galaxies are a bit similar to people: during the first phase of their existence they grow rapidly, after which a stellar birth control occurs in most galaxies. Thanks to new observations from Dutch ...

Colliding galaxies make love, not war

Oct 17, 2006

A new Hubble image of the Antennae galaxies is the sharpest yet of this merging pair of galaxies. As the two galaxies smash together, billions of stars are born, mostly in groups and clusters of stars. The ...

Stars forced to relocate near the Southern Fish

Mar 03, 2009

About 100 million light-years away, in the constellation of Piscis Austrinus (the Southern Fish), three galaxies are playing a game of gravitational give-and-take that might ultimately lead to their merger ...

'Big baby' galaxy found in newborn Universe

Sep 28, 2005

The NASA/ESA Hubble Space Telescope and NASA’s Spitzer Space Telescope have teamed up to 'weigh' the stars in distant galaxies. One of these galaxies is not only one of the most distant ever seen, but it appears to be unusually ...

Survey Reveals Building Block Process For Biggest Galaxies

Apr 12, 2006

A new study of the universe's most massive galaxy clusters shows how mergers play a critical role in their evolution. Astronomers used the twin Gemini Observatory instruments in Hawaii and Chile, and the Hubble Space Telescope ...

Recommended for you

Is the universe finite or infinite?

Mar 27, 2015

Two possiblities exist: either the Universe is finite and has a size, or it's infinite and goes on forever. Both possibilities have mind-bending implications.

'Teapot' nova begins to wane

Mar 27, 2015

A star, or nova, has appeared in the constellation of Sagittarius and, even though it is now waning, it is still bright enough to be visible in the sky over Perth through binoculars or a telescope.

Dark matter is darker than once thought

Mar 27, 2015

This panel of images represents a study of 72 colliding galaxy clusters conducted by a team of astronomers using NASA's Chandra X-ray Observatory and Hubble Space Telescope. The research sets new limits on ...

Galaxy clusters collide—dark matter still a mystery

Mar 26, 2015

When galaxy clusters collide, their dark matters pass through each other, with very little interaction. Deepening the mystery, a study by scientists at EPFL and the University of Edinburgh challenges the ...

Using 19th century technology to time travel to the stars

Mar 26, 2015

In the late 19th century, astronomers developed the technique of capturing telescopic images of stars and galaxies on glass photographic plates. This allowed them to study the night sky in detail. Over 500,000 ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.